hdoj 5489 Removed Interval 【线段树维护LIS or LIS变形】

探讨了一道关于最长递增子序列(LIS)的变种问题,该问题要求在给定序列中移除指定长度的连续子序列后,找到剩余部分中最长递增子序列的长度。提供了两种解决方案及其AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Removed Interval

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1265    Accepted Submission(s): 426


Problem Description
Given a sequence of numbers A=a1,a2,,aN, a subsequence b1,b2,,bk of A is referred as increasing if b1<b2<<bk. LY has just learned how to find the longest increasing subsequence (LIS).
Now that he has to select L consecutive numbers and remove them from A for some mysterious reasons. He can choose arbitrary starting position of the selected interval so that the length of the LIS of the remaining numbers is maximized. Can you help him with this problem?
 

Input
The first line of input contains a number T indicating the number of test cases (T100).
For each test case, the first line consists of two numbers N and L as described above (1N100000,0LN). The second line consists of N integers indicating the sequence. The absolute value of the numbers is no greater than 109.
The sum of N over all test cases will not exceed 500000.
 

Output
For each test case, output a single line consisting of “Case #X: Y”. X is the test case number starting from 1. Y is the maximum length of LIS after removing the interval.
 

Sample Input
2 5 2 1 2 3 4 5 5 3 5 4 3 2 1
 

Sample Output
Case #1: 3 Case #2: 1
 

去年网赛的题,那时自己dp太白了。。。


题意:给定一个N个元素的序列,要求任选起点位置去掉一个长度L的连续区间,问剩下序列最大的LIS。


思路一:设置dp1[i]为以a[i]开头的LIS,dp2[i]为以a[i]结尾的LIS。我们需要维护的信息是 add + dp1[i] - 1,add表示去掉区间[i-L-1, i-1]且以a[i]结尾的LIS。

dp1[i]和dp2[i]正反跑一次O(nlogn)算法就求出来了,至于add可以考虑用一棵线段树去维护dp2[],映射id后,将dp2[id]更新到当前id上,找区间[1, i-id-1]最大值。边界状态没有维护到[N-L+1, N]区间,最后加个特判就好了。


AC代码:


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (200000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
struct Node{
    int val, id;
};
Node num[MAXN];
bool cmp(Node a, Node b){
    if(a.val != b.val)
        return a.val < b.val;
    else
        return a.id > b.id;
}
struct Tree{
    int l, r, Max;
};
Tree tree[MAXN<<2];
void PushUp(int o){
    tree[o].Max = max(tree[ll].Max, tree[rr].Max);
}
void Build(int o, int l, int r)
{
    tree[o].l = l; tree[o].r = r;
    tree[o].Max = 0;
    if(l == r)
        return ;
    int mid = (l + r) >> 1;
    Build(lson); Build(rson);
}
void Update(int o, int pos, int v)
{
    if(tree[o].l == tree[o].r)
    {
        tree[o].Max = v;
        return ;
    }
    int mid = (tree[o].l + tree[o].r) >> 1;
    if(pos <= mid)
        Update(ll, pos, v);
    else
        Update(rr, pos, v);
    PushUp(o);
}
int Query(int o, int L, int R)
{
    if(tree[o].l == L && tree[o].r == R)
        return tree[o].Max;
    int mid = (tree[o].l + tree[o].r) >> 1;
    if(R <= mid)
        return Query(ll, L, R);
    else if(L > mid)
        return Query(rr, L, R);
    else
        return max(Query(ll, L, mid), Query(rr, mid+1, R));
}
int dp1[MAXN], dp2[MAXN], g[MAXN];
int main()
{
    int t, kcase = 1; Ri(t);
    W(t)
    {
        int N, L;
        Ri(N); Ri(L);
        for(int i = 1; i <= N; i++) Ri(num[i].val), g[i] = INF, num[i].id = i;
        for(int i = N; i >= 1; i--)
        {
            int k = lower_bound(g+1, g+N+1, -num[i].val) - g;
            dp1[i] = k;
            g[dp1[i]] = min(g[dp1[i]], -num[i].val);
        }
        CLR(g, INF);
        for(int i = 1; i <= N; i++)
        {
            int k = lower_bound(g+1, g+N+1, num[i].val) - g;
            dp2[i] = k;
            g[dp2[i]] = min(g[dp2[i]], num[i].val);
        }
        sort(num+1, num+N+1, cmp);
        int ans = 0; Build(1, 1, N);
        for(int i = 1; i <= N; i++)
        {
            Update(1, num[i].id, dp2[num[i].id]);
            int pos = num[i].id - L - 1;
            if(pos < 0) continue;
            int add = 1;
            if(pos > 0) add += Query(1, 1, pos);
            //printf("%d %d\n", add, dp1[num[i].id]);
            ans = max(add + dp1[num[i].id] - 1, ans);
        }
        if(N > L) ans = max(ans, dp2[N-L]);
        printf("Case #%d: %d\n", kcase++, ans);
    }
    return 0;
}

思路二:LIS变形直接搞,在求a[i]的add的时候,在g[]数组里面只放入a[i-L-1]前面的信息,这样就忽略掉中间区间[i-L, i-1]。


AC代码:


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (200000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
struct Node{
    int val, id;
};
Node num[MAXN];
int dp1[MAXN], g[MAXN];
int main()
{
    int t, kcase = 1; Ri(t);
    W(t)
    {
        int N, L;
        Ri(N); Ri(L);
        for(int i = 1; i <= N; i++) Ri(num[i].val), g[i] = INF, num[i].id = i;
        for(int i = N; i >= 1; i--)
        {
            int k = lower_bound(g+1, g+N+1, -num[i].val) - g;
            dp1[i] = k;
            g[dp1[i]] = min(g[dp1[i]], -num[i].val);
        }
        CLR(g, INF); int ans = 0;
        for(int i = 1; i <= N; i++)
        {
            int pos = i - L - 1;
            if(pos > 0) {int k = lower_bound(g+1, g+N+1, num[pos].val) - g; g[k] = min(g[k], num[pos].val);}
            int k = lower_bound(g+1, g+N+1, num[i].val) - g;
            ans = max(ans, k + dp1[i] - 1);
        }
        if(N > L) {int k = lower_bound(g+1, g+N+1, num[N-L].val) - g; ans = max(ans, k);}
        printf("Case #%d: %d\n", kcase++, ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值