hdoj 5606 tree 【并查集】



tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 180    Accepted Submission(s): 95


Problem Description
There is a tree(the tree is a connected graph which contains n points and n1 edges),the points are labeled from 1 to n,which edge has a weight from 0 to 1,for every point i[1,n],you should find the number of the points which are closest to it,the clostest points can contain i itself.
 

Input
the first line contains a number T,means T test cases.

for each test case,the first line is a nubmer n,means the number of the points,next n-1 lines,each line contains three numbers u,v,w,which shows an edge and its weight.

T50,n105,u,v[1,n],w[0,1]
 

Output
for each test case,you need to print the answer to each point.

in consideration of the large output,imagine ansi is the answer to point i,you only need to output,ans1 xor ans2 xor ans3.. ansn.
 

Sample Input
1 3 1 2 0 2 3 1
 

Sample Output
1 in the sample. $ans_1=2$ $ans_2=2$ $ans_3=1$ $2~xor~2~xor~1=1$,so you need to output 1.
 


问题描述
有一个树(nn个点, n-1n1条边的联通图),点标号从11~nn,树的边权是0011.求离每个点最近的点个数(包括自己).
输入描述
第一行一个数字TT,表示TT组数据.
对于每组数据,第一行是一个nn,表示点个数,接下来n-1n1,每行三个整数u,v,wu,v,w,表示一条边连接的两个点和边权.
T = 50,1 \leq n \leq 100000, 1 \leq u,v \leq n,0 \leq w \leq 1T=50,1n100000,1u,vn,0w1.
输出描述
对于每组数据,输出答案.
考虑到输出规模过大,设ans_iansi表示第ii个点的答案.你只需输出ans_1 \ xor \ ans_2 \ xor \ ans_3.. \ xor \ ans_nans1 xor ans2 xor ans3.. xor ansn即可.
输入样例
1
3
1 2 0
2 3 1
输出样例
1
Hint
ans_1 = 2ans1=2
ans_2 = 2ans2=2
ans_3 = 1ans3=1
2 \ xor \ 2 \ xor \ 1=12 xor 2 xor 1=1, 因此输出11.


思路:并查集把距离为0的点合并在一起,然后每次查找根节点就好了。


AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (500000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
int ans[MAXN];
int pre[MAXN];
int Find(int p)
{
    int t;
    int child = p;
    while(p != pre[p])
        p = pre[p];
    while(child != p)
    {
        t = pre[child];
        pre[child] = p;
        child = t;
    }
    return p;
}
void Merge(int x, int y)
{
    int fx = Find(x);
    int fy = Find(y);
    if(fx != fy)
        pre[fx] =fy;
}
int main()
{
    int t; Ri(t);
    W(t)
    {
        int n; Ri(n);
        CLR(ans, 0);
        for(int i = 1; i <= n; i++)
            pre[i] = i;
        for(int i = 0; i < n-1; i++)
        {
            int a, b, c;
            Ri(a); Ri(b); Ri(c);
            if(c == 0)
                Merge(a, b);
        }
        for(int i = 1; i <= n; i++)
        {
            //printf("%d\n", pre[i]);
            if(pre[i] == i)
                ans[i]++;
            else
                ans[Find(i)]++;
        }
        int Ans = 0;
        for(int i = 1; i <= n; i++)
            Ans ^= (ans[Find(i)]);// Pi(ans[Find(i)]);
        Pi(Ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值