题意:给定两个分别具有q+1个和p+1个元素的序列,序列中的元素均不相同且均在1-n*n范围内。让你求解两个序列LCS的长度。
思路:n最大为250,n*n = 250 * 250 = 62500,LCS的O(n^2)算法会TLE。
先将一个序列里的元素建立val-id的映射fp,在另一个序列用fp[val]来替换val,然后求解LIS即可,为了方便求解,可以将fp[val] == 0的元素去掉。这样时间复杂度O(nlogn)。
AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define INF 0x3f3f3f
#define eps 1e-8
#define MAXN (250*250+10)
#define MAXM (100000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
using namespace std;
int b[MAXN], s[MAXN];
map<int, int> fp;
int main()
{
int t, n, p, q, kcase = 1;
Ri(t);
W(t)
{
Ri(n); Ri(p); Ri(q);
p++; q++;
int id = 0; fp.clear();
int a;
for(int i = 0; i < p; i++)
{
Ri(a);
fp[a] = ++id;
}
int top = 0;
for(int i = 0; i < q; i++)
{
Ri(a);
if(fp[a])
b[top++] = fp[a];
}
int len = 1; s[0] = -1;
for(int i = 0; i < top; i++)
{
s[len] = INF;
int j = lower_bound(s, s+len, b[i]) - s;
if(j == len)
len++;
s[j] = b[i];
}
printf("Case %d: %d\n", kcase++, len-1);
}
return 0;
}