Time Limit: 3 second(s) | Memory Limit: 32 MB |
The problem you need to solve here is pretty simple. You are give a function f(A, n), where A is an array of integers and n is the number of elements in the array. f(A, n) is defined as follows:
long long f( int A[], int n ) { // n = size of A
long long sum = 0;
for( int i = 0; i < n; i++ )
for( int j = i + 1; j < n; j++ )
sum += A[i] - A[j];
return sum;
}
Given the array A and an integer n, and some queries of the form:
1) 0 x v (0 ≤ x < n, 0 ≤ v ≤ 106), meaning that you have to change the value of A[x] to v.
2) 1, meaning that you have to find f as described above.
Input
Input starts with an integer T (≤ 5), denoting the number of test cases.
Each case starts with a line containing two integers: n and q (1 ≤ n, q ≤ 105). The next line contains n space separated integers between 0 and 106 denoting the array A as described above.
Each of the next q lines contains one query as described above.
Output
For each case, print the case number in a single line first. Then for each query-type "1" print one single line containing the value of f(A, n).
Sample Input | Output for Sample Input |
1 3 5 1 2 3 1 0 0 3 1 0 2 1 1 | Case 1: -4 0 4 |
Note
Dataset is huge, use faster I/O methods.
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN 100000+10
#define MAXM 50000000
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
using namespace std;
LL A[MAXN];
int main()
{
int t, kcase = 1;
Ri(t);
W(t)
{
int n, q;
Ri(n); Ri(q);
LL sum = 0;
for(int i = 0; i < n; i++)
{
Rl(A[i]);
sum += A[i];
}
sum -= A[0];
LL ans = 0;
for(int i = 0; i < n-1; i++)
{
ans += A[i] * (n-i-1) - sum;
sum -= A[i+1];
}
printf("Case %d:\n", kcase++);
while(q--)
{
int op; Ri(op);
if(op == 1)
Pl(ans);
else
{
int x, v;
Ri(x); Ri(v);
ans -= (v-A[x]) * x + (A[x]-v) * (n-x-1);
A[x] = v;
}
}
}
return 0;
}