| Time Limit: 2 second(s) | Memory Limit: 32 MB |
Given two integers: n and m and n is divisible by 2m, you have to write down the first n natural numbers in the following form. At first take first m integers and make their sign negative, then take next m integers and make their sign positive, the next m integers should have negative signs and continue this procedure until all the n integers have been assigned a sign. For example, let n be 12 and m be 3. Then we have
-1 -2 -3 +4 +5 +6 -7 -8 -9 +10 +11 +12
If n = 4 and m = 1, then we have
-1 +2 -3 +4
Now your task is to find the summation of the numbers considering their signs.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing two integers: n and m (2 ≤ n ≤ 109, 1 ≤ m). And you can assume that n is divisible by 2*m.
Output
For each case, print the case number and the summation.
Sample Input | Output for Sample Input |
| 2 12 3 4 1 | Case 1: 18 Case 2: 2 |
题意:给你1-n共n个数,给你一个数m(n % (2*m) == 0),让你每次截取m个数,按 [- + - +...]的顺序给它们添加符号,最后得到一个表达式,问表达式的结果是多少。
思路:首先n为10^9,不能模拟。
考虑 [- +] 临近2*m个数做出的贡献,求得值为m*m。同样若考虑[+ -] 临近2*m个数做出的贡献,求得值为-m*m。
这样,只需求出n分成多少个m,设temp = n / m,则相应的[- +] 或 [+ -]个数为temp / 2。
若temp为偶数,结果为所有[- +]做出的贡献。反之结果为所有[+ -]做出的贡献 + 前m个数之和。
AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN 500000+10
#define MAXM 50000000
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
using namespace std;
int main()
{
int t, kcase = 1;
Ri(t);
W(t)
{
LL n, m;
Rl(n); Rl(m);
LL temp = n / m;
LL sum;
if(temp & 1)
{
temp--;
sum = -m * (m + 1)/2;
sum += -m * m * temp / 2;
}
else
sum = m * m * temp / 2;
printf("Case %d: %lld\n", kcase++, sum);
}
return 0;
}
本文介绍了一种算法挑战,即根据给定的整数n和m,将1至n的整数序列按照特定的正负号模式进行标记,并计算最终的总和。通过分析规律,提出了一种高效的解决方案。

290

被折叠的 条评论
为什么被折叠?



