The Water ProblemTime Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 343 Accepted Submission(s): 281
Problem Description
In Land waterless, water is a very limited resource. People always fight for the biggest source of water. Given a sequence of water sources with a1,a2,a3,...,anrepresenting
the size of the water source. Given a set of queries each containing 2 integers l and r,
please find out the biggest water source between al and ar.
Input
First you are given an integer T(T≤10) indicating
the number of test cases. For each test case, there is a number n(0≤n≤1000) on
a line representing the number of water sources. n integers
follow, respectively a1,a2,a3,...,an,
and each integer is in {1,...,106}.
On the next line, there is a number q(0≤q≤1000) representing
the number of queries. After that, there will be q lines
with two integers l and r(1≤l≤r≤n) indicating
the range of which you should find out the biggest water source.
Output
For each query, output an integer representing the size of the biggest water source.
Sample Input
Sample Output
|
RMQ裸题
ac代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 10010
#define INF 1000000000
using namespace std;
int A[MAXN];
int N, M;
int Amax[MAXN][50];
void RMQ_init()
{
for(int i = 1; i <= N; i++)
Amax[i][0] = A[i];
for(int j = 1; (1<<j) <= N; j++)
{
for(int i = 1; i + (1<<j)-1 <= N; i++)
Amax[i][j] = max(Amax[i][j-1], Amax[i+(1<<(j-1))][j-1]);
}
}
int query(int L, int R)
{
int k = 0;
while((1<<(k+1)) <= R-L+1) k++;
return max(Amax[L][k], Amax[R-(1<<k)+1][k]);
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d", &N);
for(int i = 1; i <= N; i++)
scanf("%d", &A[i]);
RMQ_init();
scanf("%d", &M);
int x, y;
while(M--)
{
scanf("%d%d", &x, &y);
printf("%d\n", query(x, y));
}
}
return 0;
}
本文介绍了一种解决区间最大值查询(RMQ)问题的有效算法。通过预处理数组,可以在O(log n)时间内回答任意区间内的最大值。适用于水问题等应用场景。
533

被折叠的 条评论
为什么被折叠?



