poj 1094 Sorting It All Out 【拓扑排序】

本文介绍了一种基于拓扑排序的问题解决方法,通过分析输入的关系来确定元素间的排序顺序。讨论了如何通过图论中的拓扑排序算法判断给定的元素集合是否能形成一个有序序列,并在发现序列冲突或确定序列时立即输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sorting It All Out
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 29404 Accepted: 10184

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
费解。。。 得到拓扑序列 或者 成环没有拓扑序列 的优先级高于 无序。 题目意思是:只要在 当前输入的关系 可以得到拓扑序列 或者 成环 就直接输出answer 。
站在别人的肩膀上ac的。 第一道拓扑序列:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int map[27][27];
int in[27];//记录每个点的入度
int mark[27];//存储每次查询时各点的入度 
int topo[27];//存储序列值 
int n, m;
void trans()//传递每个节点的入度 
{
    for(int i = 1; i <= n; i++)
    mark[i] = in[i];
}
int toposort()
{
    trans();
    int i, j;
    int t = 0;//统计当前序列个数 
    int num;//统计当前入度为0的点的个数 
    int next;//数组 下一并入点 
    int judge = 1;
    for(i = 1; i <= n; i++)
    {
        num = 0;
        for(j = 1; j <= n; j++)
        {
            if(!mark[j])//入度为0 
            {
                num++;
                next = j;
            }
        }
        if(!num) //有环 查询失败
        return 0; 
        if(num > 1)//当前无序 这里只能标记不能返回 因为有可能在后面查询中会成环 若成环直接输出答案 
        judge = -1;
        //return -1;
        topo[t++] = next;//并入数组 
        //printf("%d\n", next);
        mark[next] = -1;//不再查询该点 
        for(j = 1; j <= n; j++)//更新操作 与并入点有关系的点入度全部减一  
        {
            if(map[next][j])
            mark[j]--;
        }
    }
    return judge; 
    //return 1;
} 
void init()
{
    for(int i = 1; i <= n; i++)
    {
        in[i] = 0;
        for(int j = 1; j <= n; j++)
        {
            map[i][j] = 0;
        }
    }
}
int main()
{
    int i, j;
    int x, y;
    int sign;//标记是否查询出结果 
    int exist;
    char str[10];
    while(scanf("%d%d", &n, &m),n||m)
    {
        init();//初始化 
        sign = 0;//若查询出结果标记为1 
        for(i = 1; i <= m; i++)
        {
            scanf("%s", str);
            if(sign) continue;//已有结果 下面的不用处理
            x = str[0] - 'A' + 1;
            y = str[2] - 'A' + 1;
            map[x][y] = 1;
            in[y]++;//记录入度
            exist = toposort(); 
            if(exist == 1)//查询成功 
            {
                sign = 1;//已经查询出结果 
                printf("Sorted sequence determined after %d relations: ", i);
                for(j = 0; j < n; j++)
                {
                    printf("%c", 'A'+topo[j]-1);
                }
                printf(".\n");
            }
            else if(!exist) //矛盾 ->查询失败 
            {
                sign = 1;//已经有结果
                printf("Inconsistency found after %d relations.\n", i); 
            } 
        }
        if(!sign)
        printf("Sorted sequence cannot be determined.\n"); 
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值