codeforces 621 D Cow and Fields

题目链接:D
题意:给定一个点数为3e5,边数为3e5的且保证连通的边权都为1的无向图,给定k个特殊点, ( 2 < = k < = n ) (2<=k<=n) (2<=k<=n),定义要计算的路径长度是从1到n的最短路,现在要求你选择两个特殊点之间加一条长度为1的边,问你在所有方案中,要计算的路径长度最大的是多少。

昨晚看这一场很晚了就没打,但十一点多看了一下该题,口胡了一个做法。

首先可以知道答案一定是小于等于原来不加边的最短路的。
因为不管怎么加边都不会使得已存在的最短路变长。
两次bfs预处理出 d i s 1 [ x ] , d i s n [ x ] dis1[x],disn[x] dis1[x],disn[x],分别表示从 1 , n 1,n 1n出发到 x x x的最短路长度。
所以其实可以想到一个较为暴力的做法,任取两特殊点 i , j i,j ij,计算:
M a x ( m i n ( d i s 1 [ i ] + d i s n [ j ] + 1 , d i s n [ i ] + d i s j [ 1 ] + 1 , d i s 1 [ n ] ) ) Max(min(dis1[i]+disn[j]+1,disn[i]+disj[1]+1,dis1[n])) Max(min(dis1[i]+disn[j]+1,disn[i]+disj[1]+1,dis1[n])),就是最终答案。
现在考虑不那么暴力的做法,枚举特殊点 x x x,考虑往哪个特殊点上加边,假设加到了 j j j上,那么dis1[x]+disn[j]+1就可能是新的最短路,其他点都没有受到影响,那要使得这条最短路尽可能的大,那其实就是找max(disn[j])。但是这里有一点需要注意,你应该找的是在bfs过程中x延伸出去特殊点中disn最大的一项。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn=2e5+7;
vector<int> G[maxn];

int dis1[maxn],disn[maxn];
queue<int> q;
bool vis[maxn];
void bfs(int st,int dis[]){
    q.push(st);
    memset(vis,0,sizeof(vis));
    dis[st]=0;
    vis[st]=1;
    while(q.size()){
        int u=q.front(); q.pop();
        for(auto v:G[u])
            if(!vis[v]){
                dis[v]=dis[u]+1;
                q.push(v);
                vis[v]=1;
            }
    }
}

int b[maxn];
vector<int> v;//存储所有从n出发到特殊点的最短路径;
vector<int> te;
int main(){
    int n,m,k;
    cin>>n>>m>>k;
    for(int i=1,x;i<=k;++i){
        scanf("%d",&x);
        te.push_back(x);
    }
    while(m--){
        int u,v;
        scanf("%d%d",&u,&v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    bfs(1,dis1);
    bfs(n,disn);
    int res=0;

    for(auto x:te) v.push_back(disn[x]);
    sort(v.begin(),v.end());
    for(auto x:te){
        vector<int>::iterator it = upper_bound(v.begin(),v.end(),disn[x]);
        --it;
        if(it==v.begin()) continue;
        --it;//将本身x排除在外;
        //cout<<dis1[x]+(*it)+1<<endl;
        res=max(res,min(dis1[n],dis1[x]+(*it)+1));

    }
    if(res==0) res=dis1[n];
    cout<<res<<endl;

    return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值