C&R Tree全称是Classification and Regression Tree,即分类及回归树,它是由美国斯坦福大学和加州大学伯克利分校的Breiman等人于1984年提出的,从名称中不难理解,它包含了分类树和回归树,分类树用于目标变量是分类型的,回归树用于目标变量是连续型的。
该算法分割的核心技术取决于目标变量的类型,如果是分类变量,可以选择使用Gini或者是Twoing.如果是连续变量,会自动选择LSD(Least-squared deviation)。
C&R Tree的生长是二叉树, 前面我们讲过的C5.0和CHAID分别是以信息增益率和卡方为标准来选择最佳分组变量和分割点,今天我们讲的C&R Tree,如果目标变量是分类型,则以Gini系数来确认分割点,如果目标变量是数值型,则以方差来确认分割点。
我们先来讲目标变量是分类型的情况,我们称之为分类树:
在C&R Tree算法中,Gini系数反映的是目标变量组间差异程度,系数越小,组间差异越大。Gini系数计算公式如下:
G(t)=1-(t1/T)^2-(t2/T)^2-(t3/T)^2-(tn/T)^2
其中T为总记录数,t1,t2,t3,tn…..分别为输出变量每个类别的记录数
为了比较好理解这个公式,我们以分析结果来理解公式内容,如下图:

该决策树分析结果,是分析客户的流失为目标,影响的因素有小朋友个数(children),婚姻状态(Status),年龄(age)等,我们先从根节点开始看。
根节点的G(t)=1-(562/1469) ^2-(907/1469)^2=0.472421883
左边节点G(t1)=1-(439/833) ^2-(394/833) ^2=0.49854083