一:简单介绍
ChatGLM-6B是清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University)发布的一个开源的对话机器人。根据官方介绍,这是一个千亿参数规模的中英文语言模型。并且对中文做了优化。本次开源的版本是其60亿参数的小规模版本,约60亿参数,本地部署仅需要6GB显存(INT4量化级别)。
其中ChatGLM2-6B代码依照Apache-2.0协议开源,ChatGLM2-6B模型的权重的使用则需要遵循Model License。ChatGLM2-6B权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。
ChatGLM2-6B是开源中英双语对话模型 ChatGLM-6B 的第二代版本在保留了初代对话流畅、部署门槛较低等众多优秀特点之上,引入以下四个新特性:
1、性能更强大,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
2、更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。
3、更长的上下文:由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。
4、更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。
二:环境准备
1、查看CUDA的版本
打开cmd,执行nvidia-smi

清华大学的知识工程和数据挖掘小组开源的ChatGLM-6B对话模型升级至2-6B版本,增强了性能,支持更长上下文和开放协议。文章详细指导了CUDA、显卡驱动、cuDNN和VisualStudio等环境的安装过程。
最低0.47元/天 解锁文章
11万+

被折叠的 条评论
为什么被折叠?



