OpenCV__Python 直线检测Hough_教程21

#引入opencv模块
import cv2 as cv
#引入numpy模块
import numpy as np
#引入sys模块
import sys


#line
def line_detection(img):
    blurred = cv.GaussianBlur(img,(5,5),0)
    gray = cv.cvtColor(blurred,cv.COLOR_BGR2GRAY)
    edge_output = cv.Canny(gray,50,150,apertureSize=3)
    cv.namedWindow("canny_direct_edge",cv.WINDOW_NORMAL)
    cv.imshow("canny_direct_edge",edge_output)
    lines = cv.HoughLines(edge_output,1,np.pi/180,200)
    for line in lines:
        rho,theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a*rho
        y0 = b*rho
        x1 = int(x0 + 1000*(-b))
        y1 = int(y0 + 1000*(a))
        x2 = int(x0 - 1000*(-b))
        y2 = int(y0 - 1000*(a))
        cv.line(img,(x1,y1),(x2,y2),(0,255,255),2)
    cv.namedWindow("lines_img",cv.WINDOW_NORMAL)
    cv.imshow("lines_img",img)



#line
def line_detection_possible(img):
    blurred = cv.GaussianBlur(img,(5,5),0) 
    gray = cv.cvtColor(blurred,cv.COLOR_BGR2GRAY)
    edge_output = cv.Canny(gray,50,150,apertureSize=3)
    cv.namedWindow("canny_direct_edge_P",cv.WINDOW_NORMAL)
    cv.imshow("canny_direct_edge_P",edge_output)
    lines = cv.HoughLinesP(edge_output,1,np.pi/180,100,minLineLength=50,maxLineGap=10)
    for line in lines:
        x1,y1,x2,y2 = line[0]
        cv.line(img,(x1,y1),(x2,y2),(0,255,255),2)
    cv.namedWindow("lines_img_P",cv.WINDOW_NORMAL)
    cv.imshow("lines_img_P",img)


def img_test():
    img = cv.imread('E:/chenopencvblogimg/road2.jpg')
    #判断是否读取成功
    if img is None:
        print("Could not read the image,may be path error")
        return
    cv.namedWindow("origin Pic",cv.WINDOW_NORMAL)
    cv.imshow("origin Pic",img)
    line_detection(img)
    line_detection_possible(img)

    #让显示等待键盘输入维持在那里,否则程序跑完就闪退啦!
    cv.waitKey(0)
    #销毁窗口
    cv.destroyAllWindows()

if __name__ == '__main__':
    sys.exit(img_test() or 0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值