二项式定理的公式的由来
n!/{i!*(n-i)!}
这个不知道怎样推的
(defun pow (num count)
(if (> count 0)
(* num
(pow num
(- count 1) ) )
1))
(defun expr (i j)
(if (or (eq i (1+ j))(eq j 0) )
1
(+ (expr (- i 1)
j )
(expr (- i 1)
(- j 1) ))))
(defun slope (n)
(if (> n 1)
(* n
(slope (- n 1)))
1.0))
(defun direct (i j)
(/ (slope i)
(* (slope j)
(slope (- i j)))))
(defun testhelper (start end)
(if (< end 0)
0
(progn
(testhelper start (- end 1))
(progn
(print (expr start end ) )
(print 'compare)
(print (direct (1- start) end))))))
(defun test (n)
(if (> n 0)
(progn
(testhelper (1+ n) n)
(print '(newline newtest))
(test (- n 1)))
(print 'over)))
(test 10)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
(1/n)^2.....的和 大约等于(pi*pi/6) 在n接近无穷大的时候才成立
(defun pow (num count)
(if (> count 0)
(* num
(pow num
(- count 1) ) )
1))
(defun expr (n)
(if (> n 0)
(+ (pow (/ 1.0 n) 2)
(expr (- n 1)))
0))
(defun direct (n)
(/ (pow pi 2) 6.0))
(defun test (n)
(if (> n 0)
(progn
(print (expr n))
(print 'compare)
(print (direct n ))
(test (- n 1)))
(print 'over)))
(test 10)
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
PI=4-4/3/5-4/7+4/9和 大约等于pi 在n接近无穷大的时候才成立
(defun pow (num count)
(if (> count 0)
(* num
(pow num
(- count 1) ) )
1))
(defun expr (n symbol)
(if (or (> n 0) (eq n 0))
(+ (*
(pow -1 n)
(/ 1.0 (1+ (* 2 n)) ))
(expr (- n 1) (1- symbol)))
0))
(* 4 (expr 1000 0))
(* 4 (expr 2000 0))
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
还有一个是前面提到过的调和级数。sum ( 1/n)