HDU3377 Plan 插头dp
原题:HDU3377
题意: N∗M 矩阵,格子权值有正负,求从左上角到右下角的权值和最大的路径。
解:简单路径问题插头dp。
在起点终点位置维护一个独立插头
对起点,没有左,上插头的状态转移到右独立插头或者下独立插头。
对终点,只有左独立插头或只有右独立插头的状态转移到没有右,下插头。
对普通格子,正常处理,有左,上插头合并连通分量,只有左插头或上插头延续连通分量,没有左,上插头,新建连通分量或者不选此格。
这题不做处理,使用最小表示法可能会T,所以可以旋转矩阵,使得m为
min(n,m)
。
代码如下:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 15
#define HASH 10007
#define STATE 1000100
#define inf 0x7f7f7f7f
#define mod 1000000007
typedef long long ll;
int n, m;
int ch[N], code[N];
int mp[N][N], mp2[N][N];
struct HASHMAP
{
int head[HASH], next[STATE], size;
ll state[STATE], f[STATE];
void init() {
size = 0;
memset(head, -1, sizeof(head));
}
void push(ll st, ll ans) {
int h = st % HASH;
for (int i = head[h]; i != -1; i = next[i]) {
if (state[i] == st) {
f[i] = max(ans, f[i]);
return;
}
}
state[size] = st;
f[size] = ans;
next[size] = head[h];
head[h] = size++;
}
}hm[2];
void decode(ll st)
{
for (int i = m; i >= 0; i--) {
code[i] = st & 7;
st >>= 3;
}
}
ll encode()
{
int cnt = 1;
ll st = 0;
memset(ch, -1, sizeof(ch));
ch[0] = 0;
ch[7] = 7;
for (int i = 0; i <= m; i++) {
if (ch[code[i]] == -1) ch[code[i]] = cnt++;
code[i] = ch[code[i]];
st <<= 3;
st |= code[i];
}
return st;
}
void shift()
{
for (int i = m; i > 0; i--) {
code[i] = code[i-1];
}
code[0] = 0;
}
void dp(int r, int c, int cur)
{
for (int k = 0; k < hm[cur].size; k++) {
decode(hm[cur].state[k]);
int up = code[c], left= code[c-1];
if ((r == 1 && c == 1) || (r == n && c == m)) {
if (!up && !left) {
if (c < m) {
code[c] = 7;
code[c-1] = 0;
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
if (r < n) {
code[c] = 0;
code[c-1] = 7;
if (m == c) shift();
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
}
if (up || left) {
code[c] = code[c-1] = 0;
if (m == c) shift();
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
continue;
}
if (up && left) {
if (up != left) {
int t;
t = max(up, left);
code[c] = code[c-1] = 0;
for (int i = 0; i <= m; i++) {
if (code[i] == left || code[i] == up) { //注意不是code[i] == up,wa了无数发
code[i] = t;
}
}
if (m == c) shift();
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
}
else if (up || left) {
if (c < m) {
code[c-1] = 0;
code[c] = up | left;
if (m == c) shift();
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
if (r < n) {
code[c-1] = up | left;
code[c] = 0;
if (m == c) shift();
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
}
else {
if (c < m && r < n) {
code[c-1] = code[c] = 6;
// if (c == m) shift();
hm[cur^1].push(encode(), hm[cur].f[k]+mp[r][c]);
}
code[c] = code[c-1] = 0;
if (c == m) shift();
hm[cur^1].push(encode(), hm[cur].f[k]);
}
}
}
int main()
{
int cas = 0;
while (~scanf("%d%d", &n, &m)) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d", &mp[i][j]);
}
}
if (n == 1 && m == 1) {
printf("Case %d: %d\n", ++cas, mp[1][1]);
continue;
}
if (n < m) {
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
mp2[i][j] = mp[j][i];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
mp[i][j] = mp2[i][j];
}
}
swap(n, m);
}
int cur = 0;
hm[cur].init();
hm[cur].push(0, 0);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
hm[cur^1].init();
dp(i, j, cur);
cur ^= 1;
}
}
ll ans = -inf;
for (int i = 0; i < hm[cur].size; i++) {
ans = max(ans, hm[cur].f[i]);
}
printf("Case %d: %lld\n", ++cas, ans);
}
return 0;
}