CodeForces 453A(数学期望)

探讨数学期望的概念,通过实例解释其来源,并应用于解决一个关于投掷骰子的数学问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:CodeForces 453A


题目大意

给你一个n面的骰子,投掷m次,问投得最大面的数学期望。


数学期望的由来

数学期望,早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。


概念:数学期望是试验中每次可能结果的概率乘以其结果的总和。


本题求最大面的数学期望,那么关键就在求出最大面的概率。

不难推出, 假设所求是最大面为 i ,则我们可以求出 面为 1 ~ i - 1 的所有组合 , 即 (i-1) ^ n种 ,相应的 1 ~ i的所有组合 有 (i)^n种,

所以最大面出现的组合数为i^n - (1-i)^n,求出这个期望就好求了,每种情况的概率都为 pow (1/m,n);


源代码

#include<stdio.h> 
#include<cmath> 
#include<iostream>
using namespace std; 
int main()
{
	int n,m;
	while(scanf("%d%d",&n,&m)!=EOF){
		double ans = 0;
		double now = 0,pre = 0;
		for(int i=1;i<=n;i++){
			now = (pow((double)i/n,m));
			ans += (now - pre)*i; //乘以对应的i ,求期望
			pre = now;
		}
		printf("%.12f\n",ans);
	}
}




### 关于 Floor 和 Ceil 函数在编程中的实现 Floor 和 Ceil 是两个常见的数学函数,在许多算法竞赛平台(如 Codeforces)上经常被用于解决涉及整数除法、取模运算等问。以下是它们的定义以及如何在程序设计中实现这些功能。 #### 定义 - **Floor Function**: 对实数向下取整,返回不大于该数值的最大整数[^1]。 - **Ceil Function**: 对实数向上取整,返回不小于该数值的最小整数[^2]。 #### 实现方法 大多数现代编程语言都提供了内置库来支持 floor 和 ceil 的计算: ##### 使用标准库 在 C++ 中可以利用 `<cmath>` 库中的 `floor` 和 `ceil` 方法完成相应操作: ```cpp #include <iostream> #include <cmath> int main() { double num = 3.7; std::cout << "Floor value: " << static_cast<int>(std::floor(num)) << "\n"; // 输出 3 std::cout << "Ceil value: " << static_cast<int>(std::ceil(num)) << "\n"; // 输出 4 } ``` 然而需要注意的是,当处理负数时,这两个函数的行为可能不符合直觉。例如,`floor(-2.5)` 返回 `-3` 而不是 `-2`,因为它是严格意义上的“下限”。 如果目标是在没有浮点误差的情况下仅针对正整数执行类似的逻辑,则可以通过简单的算术表达式手动模拟这两种行为而无需调用任何外部库函数: - 手动实现 Floor: 当 a / b 结果为非零余数时保持原样;否则减去一个小量使得最终结果总是趋向更小的方向移动直到达到下一个较低的整数位置为止。 - 手动实现 Ceil: 如果存在剩余部分则增加到下一更高的整数值上去;如果没有多余的部分,那么它本身已经是天花板高度了. 具体代码如下所示: ```python def manual_floor(a, b): return (a // b) def manual_ceil(a, b): if a % b == 0: return a // b else: return (a // b) + 1 ``` 上述 Python 版本展示了如何通过基本运算符构建自己的版本而不依赖额外模块的帮助[^3]. ### 示例应用案例分析 考虑到实际应用场景下的复杂度需求,这里选取几个典型例子加以说明其用途所在之处及其重要性何在? 比如 CF 圆形 #701(Division Two)-Problem C(Floor And Mod), 这道目要求我们找到满足特定条件的一系列数字组合方案数目统计工作当中需要用到大量的地板除法规律推导过程才能得出正确结论出来. 同样还有像CF Problem D(编号1469)-Ceiling Division Operations [^2], 此处探讨的就是怎样快速有效地把初始状态转变成为期望结束形态所经历过的最少次数动作规划策略研究方向上面去了.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值