一些支持向量机(SVM)的开源代码库的链接及其简介

(1)LIBSVM:     http://www.csie.ntu.edu.tw/~cjlin/libsvm/

LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification.

Since version 2.8, it implements an SMO-type algorithm proposed in this paper:
R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005. You can also find a pseudo code there. (how to cite LIBSVM)

Our goal is to help users from other fields to easily use SVM as a tool. LIBSVM provides a simple interface where users can easily link it with their own programs. Main features of LIBSVM include

  • Different SVM formulations
  • Efficient multi-class classification
  • Cross validation for model selection
  • Probability estimates
  • Various kernels (including precomputed kernel matrix)
  • Weighted SVM for unbalanced data
  • Both C++ and Java sources
  • GUI demonstrating SVM classification and regression
  • PythonRMATLABPerlRubyWekaCommon LISPCLISPHaskellLabVIEW, and PHP interfaces. C# .NET code and CUDA extension is available. 
    It's also included in some data mining environments: RapidMinerPCP, and LIONsolver.
  • Automatic model selection which can generate contour of cross valiation accuracy.

(2)LIBLINEAR   http://www.csie.ntu.edu.tw/~cjlin/liblinear/

LIBLINEAR is a linear classifier for data with millions of instances and features. It supports

  • L2-regularized classifiers 
    L2-loss linear SVM, L1-loss linear SVM, and logistic regression (LR)
  • L1-regularized classifiers (after version 1.4) 
    L2-loss linear SVM and logistic regression (LR)
  • L2-regularized support vector regression (after version 1.9) 
    L2-loss linear SVR and L1-loss linear SVR.

Main features of LIBLINEAR include

  • Same data format as LIBSVM, our general-purpose SVM solver, and also similar usage
  • Multi-class classification: 1) one-vs-the rest, 2) Crammer & Singer
  • Cross validation for model selection
  • Probability estimates (logistic regression only)
  • Weights for unbalanced data
  • MATLAB/Octave, Java, Python, Ruby interfaces

(3)SVMlight   http://www.cs.cornell.edu/People/tj/svm_light/

SVMlight is an implementation of Vapnik's Support Vector Machine [Vapnik, 1995] for the problem of pattern recognition, for the problem of regression, and for the problem of learning a ranking function. The optimization algorithms used in SVMlight

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值