AOA定位算法,平面上的angle of arrive定位算法与MATLAB实现

请添加图片描述

平面上的角度到达(Angle of Arrival, AOA)定位算法是一种常用的定位技术,它通过测量目标信号相对于接收天线阵列的入射角来实现定位.
本文给出AOA算法的原理与MATLAB例程

基本原理

信号接收

使用多个接收天线阵列捕获目标发出的信号。

信号处理

对接收的信号进行相位或时间差分析,以获得信号入射角。

角度估计

根据多天线接收的信号相位或时间差,利用相应的算法估计信号的入射角。常用的算法包括:
相位差法:根据各天线接收信号的相位差计算入射角。
时间差法:根据各天线接收信号的时间差计算入射角。
波束赋形法:利用波束扫描技术确定信号方向。

定位计算

将估计的入射角信息输入到定位算法中,结合已知的天线阵列位置,计算目标的二维位置坐标。
常用的定位算法包括三角测量法、最小二乘法等。

下面给出的MATLAB代码使用最小二乘来解算:

完整源代码

% AOA定位,二维、N个锚点(自适应基站数量)
% 2024-11-26/Ver1

%% 初始化
clc;clear;close all
2) Real-Time Frequency Estimation: As the antenna array rotation frequency can be obtained from the anchor, we need to estimate the observed distance difference frequency for real time tracking. The time-frequency features of non-stationary signalshavebeenwidelyinvestigatedinhealthmonitoring,radar systems, etc. Specifically, the continuous wavelet transform (CWT)isapopularmethodthatcancalculatethetime-frequency features. When the signal Δd(t) is sampled, the time-frequency coefficients can be obtained via the CWT calculation. As the wavelet scalar is specified as positive, the negative frequency would be lost in the calculation. Thus, we select the anchor frequency that is larger than the target’s velocity. Hence, the coefficients can be calculated as follows [wt,f]=cwt(Δd(t),fs), (13) where wtis a matrix and every row corresponds to one scale, f is the frequencies, and fs is the sampling frequency of Δd(t). Weselect the morlet wavelet as the wavelet basis function in thetransform and further extract the time-frequency features ωo(t) via wavelet ridge detection from the coefficients [wt,f]. Based on the frequency estimation, we can calculate the real-time velocity of the target. Thus, we further estimate the real-time AoA of the target via the time-frequency features instead of the motion prediction (assuming the target track in a specific mode with either constant speed or acceleration is not robust for random moving) [25]. When the target track starts from (ϕ(t0),d0) and arrive at (ϕ(t1),d1), theAoAθ(t) can be expressed as follow Thus, the distance vector can be modeled with the time frequency features and expressed as ⎡ ⎢ Δd(θ(t)) = ⎢ ⎣ 2r sin(αt2 2 )sin(θ(t1) − αt2 2 ) 2r sin(αt3 2 )sin(θ(t2) − αt3 ... 2r sin(αtn 2 ) 2 )sin(θ(tn) − αtn 2 ) ⎤ ⎥ ⎥ ⎦. Correspondingly, the real-time AoA is estimated by min θt0 ,b h(θt0 ,b)=Δd−Δd(θ(t),b) . (15) (16) Obviously, this objective function optimization is similar to the static AoA calculation. Thus, we estimate θ(t) based on the iterative method in Section IV-A and design the tracking algorithm asillustrated in Algorithm 1. Totrackamovingtarget, the robot estimates its relative real-time location and schedules the path to move to the destination. Specifically, the mobile anchor keeps sending the ranging requests and measuring the rotation angle in the tracking. The ranging difference Δd(t) and the corresponding angle ϕ(t) are recorded in a measurement queue. As the target may move in the tracking, the target speeds are first estimated via the Doppler shift. Further, the real-time AoA is calculated in the stochastic gradient descent optimiza tion, during which the m random samples from the results are selected in each iteration until the error is less than the threshold ortheiterationisfinished.Whenthereal-timeAoAiscalculated, the robot selects a reachable path to follow the moving target’s location.这里在干嘛
最新发布
08-20
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值