E. Mike and Geometry Problem
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that
). You are given two integers n and k and nclosed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any kof the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Examples
input
3 2 1 2 1 3 2 3
output
5
input
3 3 1 3 1 3 1 3
output
3
input
3 1 1 2 2 3 3 4
output
6
Note
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
题目求线段点重合大于K次的组合次数,求和即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int n,k;
struct node
{
long long x;
int f;
}pt[500005];
long long fac[200005];
long long powdd[200005];
bool cmp(node a,node b)
{
return a.x<b.x;
}
long long mod=1e9+7;
long long powd(long long a,long long b)
{
long long ans=1;
while(b>0)
{
if(b%2==1)
{
ans=ans*a%mod;
}
a=a*a%mod;
b/=2;
}
return ans;
}
long long C(long long b,long long a)
{
long long ans=1;
if(a>b)
return 0;
ans=(fac[b]*powdd[a]%mod)*powdd[b-a]%mod;
return ans;
}
int main()
{
fac[0]=1;
for(long long i=1;i<=200000;i++)
fac[i]=fac[i-1]*i%mod;
for(int i=0;i<=200000;i++)
powdd[i]=powd(fac[i],mod-2)%mod;
while(~scanf("%d%d",&n,&k))
{
for(int i=0;i<n;i++)
{
scanf("%lld%lld",&pt[i*2].x,&pt[i*2+1].x);
pt[i*2].f=1;pt[2*i+1].f=-1;
pt[i*2+1].x++;
}
sort(pt,pt+(2*n),cmp);
int ct=0;
int pre=-(1e9+7);
long long ans=0;
for(int i=0;i<2*n;i++)
{
if(i!=0)
{
if(pt[i].x!=pt[i-1].x)
{
//printf("%lld:%d ct:%d plus:%lld\n",pt[i].x,pre,ct,(C(ct,k)*(pt[i].x-pre)%mod)%mod);
ans=(ans+C(ct,k)*(pt[i].x-pre)%mod)%mod;
}
}
ct+=pt[i].f;
pre=pt[i].x;
}
printf("%lld\n",ans);
}
}
本文介绍了一个涉及几何问题的算法挑战,旨在求解多个线段区间交集中的整数点数量之和,当这些交集中的点数目超过特定阈值时。通过使用离散数学和组合数学的方法,该算法能够高效地解决这一复杂问题。

2553

被折叠的 条评论
为什么被折叠?



