题目:Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
函数接口:int maxPoints(vector<Point> &points) {}
算法思想:先剔除点数组points中重复的点,然后从前两个点开始,构建一条直线,依次加入新的点,新加入的点要么加到原有的直线上,要么形成新的直线,直至所有点加入。然后统计所有直线上的点数(加上重复的点),得到最大值。
int maxPoints(vector &points)
{
if (points.size() == 0)
return 0;
vector points_nodup;
unordered_map mark;
stringstream ss;
string s;
for (int i = 0; i < points.size(); i++)
{
ss.str("");
ss << points[i].x << '-' << points[i].y;
s = ss.str();
if (mark.find(s) == mark.end())
{
points_nodup.push_back(points[i]);
mark[s] = 1;
}
else
mark[s]++;
}
if (points_nodup.size() == 1)
return points.size();
if (points_nodup.size() == 2)
return points.size();
vector> lines;
vector line;
line.push_back(0);
line.push_back(1);
lines.push_back(line);
for (int i = 2; i < points_nodup.size(); i++)
{
Point p = points_nodup[i];
bool flag = false;
for (int j = 0; j < lines.size(); j++)
{
if ((points_nodup[lines[j][1]].y-points_nodup[lines[j][0]].y)*(p.x-points_nodup[lines[j][1]].x) ==
(p.y-points_nodup[lines[j][1]].y)*(points_nodup[lines[j][1]].x-points_nodup[lines[j][0]].x))
{
lines[j].push_back(i);
flag = true;
break;
}
}
if (flag == false)
{
for (int j = 0; j < i; j++)
{
line.clear();
line.push_back(j);
line.push_back(i);
lines.push_back(line);
}
}
}
int maxNum = 0;
for (int i = 0; i < lines.size(); i++)
{
int pointNum = 0;
for (int j = 0; j < lines[i].size(); j++)
{
ss.str("");
ss << points_nodup[lines[i][j]].x << '-' << points_nodup[lines[i][j]].y;
s = ss.str();
pointNum += mark[s];
}
if (maxNum < pointNum)
maxNum = pointNum;
}
return maxNum;
}
本文介绍了一个算法,用于确定二维平面上给定点集中,有多少点位于同一直线上,并详细解释了函数接口、算法思想及实现过程。
541

被折叠的 条评论
为什么被折叠?



