Competitive Programming with Large Reasoning Models

本文是LLM系列文章,针对《Competitive Programming with Large Reasoning Models》的翻译。

摘要

我们发现,应用于大型语言模型(LLM)的强化学习显著提高了复杂编码和推理任务的性能。此外,我们将两种通用推理模型——OpenAI o1和o3的早期检查点——与特定领域的系统o1-ioi进行了比较,o1-ioi使用了为参加2024年国际信息学奥林匹克竞赛(IOI)而设计的人工推理策略。我们在IOI 2024上与o1-IOI进行了现场比赛,并使用手工制作的测试时间策略,排名第49位。在宽松的比赛限制下,奥获得了一枚金牌。然而,在评估后续模型(如o3)时,我们发现o3在没有手工制定特定领域策略或放宽约束的情况下实现了金牌。我们的研究结果表明,尽管o1-ioi等专用管道产生了切实的改进,但扩大的通用o3模型在不依赖手工推理启发式的情况下超越了这些结果。值得注意的是,o3在2024年IOI上获得了金牌,并获得了与精英人类竞争对手相当的CodeForces评级。总体而言,这些结果表明,扩展通用强化学习,而不是依赖于特定领域的技术,为在推理领域(如竞争性编程)实现最先进的人工智能提供了一条稳健的道路。

1 引言

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值