Seven Failure Points When Engineering a Retrieval Augmented Generation System

本文是LLM系列文章,针对《Seven Failure Points When Engineering a Retrieval Augmented Generation System》的翻译。

摘要

软件工程师越来越多地使用一种称为检索增强生成 (RAG) 的策略向应用程序添加语义搜索功能。RAG 系统涉及查找在语义上与查询匹配的文档,然后将文档传递给大型语言模型 (LLM),例如 ChatGPT,以使用 LLM 提取正确答案。RAG 系统旨在:a) 减少 LLM 的幻觉反应问题,b) 将来源/参考文献链接到生成的响应,以及 c) 消除使用元数据注释文档的需要。然而,RAG 系统存在信息检索系统固有的限制和对 LLM 的依赖。在本文中,我们从研究、教育和生物医学三个不同领域的案例研究中提出了关于 RAG 系统故障点的经验报告。我们分享了经验教训,并提出了在设计 RAG 系统时需要考虑的 7 个失败点。我们的工作得出的两个关键收获是:1) RAG 系统的验证仅在运行期间可行,以及 2) RAG 系统的稳健性是不断发展的,而不是在一开始就设计出来的。最后,我们列出了软件工程社区关于 RAG 系统的潜在研究方向。

1 引言

2 相关工作

3 检索增强生成

4 案例研究

5 RAG 系统的故障点

6 经验教训和未来的研究方向

### Retrieval Augmented Generation in NLP Models and Applications #### Definition and Concept Retrieval Augmented Generation (RAG) is a method that integrates retrieval-based and generation-based approaches, particularly useful for tasks requiring the reproduction of specific information. This technique leverages content pertinent to solving an input task as context, enabling more accurate knowledge retrieval which subsequently aids in generating better responses through iterative refinement processes [^1]. In addition, RAG significantly reduces model hallucination by grounding generated outputs on factual data retrieved from external sources or databases [^2]. #### General Process The general process of applying RAG within Natural Language Processing (NLP) involves several key steps: - **Contextual Information Collection**: Gathering relevant documents or pieces of text related to the query. - **Knowledge Retrieval**: Using these collected contexts to find precise facts or statements needed for response formulation. - **Response Generation**: Generating coherent answers based on both the original prompt and the retrieved information. This approach ensures that the final output not only addresses user queries accurately but also remains grounded in verified facts rather than potentially unreliable internal representations learned during training [^1]. #### Implementation Example Below demonstrates how one might implement a simple version of this concept using Python code snippets alongside popular libraries like Hugging Face Transformers for natural language understanding and FAISS for efficient similarity search among large document collections. ```python from transformers import pipeline import faiss import numpy as np def create_index(documents): """Creates an index structure suitable for fast nearest neighbor searches.""" embeddings = get_embeddings_for_documents(documents) dimensionality = len(embeddings[0]) # Initialize Faiss Index Flat L2 distance metric index = faiss.IndexFlatL2(dimensionality) # Add vectors into our searchable space index.add(np.array(embeddings).astype('float32')) return index def retrieve_relevant_contexts(query_embedding, index, top_k=5): """Finds most similar items given a query vector against indexed dataset""" distances, indices = index.search(np.array([query_embedding]).astype('float32'), k=top_k) return [(distances[i], idx) for i,idx in enumerate(indices.flatten())] # Assume `get_embeddings` function exists elsewhere... index = create_index(corpus_of_texts) qa_pipeline = pipeline("question-answering") for doc_id, score in retrieve_relevant_contexts(user_query_vector, index): answer = qa_pipeline(question=user_input, context=corpus_of_texts[doc_id]['text']) print(f"Answer found with relevance {score}: ",answer['answer']) ``` --related questions-- 1. What are some common challenges faced when implementing RAG systems? 2. Can you provide examples where RAG has been successfully applied outside traditional QA settings? 3. How does Graph Retrieval-Augmented Generation differ from standard RAG methods described here? 4. In what ways can integrating knowledge graphs enhance performance in RAG frameworks?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值