SportQA: A Benchmark for Sports Understanding in Large Language Models

SportQA是为评估LLM在体育理解中的能力而创建的基准,包含70000多道题目,涉及从基本事实到复杂推理的各种任务。实验显示,虽然LLM在基础知识上表现出色,但在复杂推理上仍不及人类专家,突显了NLP和AI在体育理解领域进步的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《SportQA: A Benchmark for Sports Understanding in Large Language
Models》的翻译。

SportQA:大型语言模型中体育理解的基准

摘要

深入了解体育这个富含战略和动态内容的领域,对于推进自然语言处理至关重要。鉴于专业基准方面的现有差距,这在评估和推进大型语言模型(LLM)方面具有特别重要的意义。为了弥补这一差距,我们引入了SportQA,这是一种专门为在体育理解的背景下评估LLM而设计的新基准。SportQA包含超过70000道跨越三个不同难度级别的多项选择题,每道题都针对体育知识的不同方面,从基本的历史事实到复杂的、基于场景的推理任务。我们对流行的LLM进行了彻底的评估,主要利用小样本学习范式,辅以思维链(CoT)提示。我们的研究结果表明,虽然LLM在基本体育知识方面表现出色,但它们在更复杂的、基于场景的体育推理中挣扎,落后于人类的专业知识。SportQA的引入标志着NLP向前迈出了重要一步,为评估和增强LLM中的体育理解提供了一个工具。

1 引言

2 相关工作

3 运动理解基准

4 实验

5 结论

### GLUE 基准及其在自然语言理解 (NLU) 多任务评估中的应用 #### 什么是 GLUE 基准? GLUE(General Language Understanding Evaluation)基准是一种用于评估自然语言处理模型语义理解能力的多任务框架[^1]。它由一系列 NLU 任务组成,旨在全面衡量模型的语言理解和泛化能力。 #### GLUE 的任务构成 GLUE 包含 9 个核心任务,这些任务均涉及单句或双句的理解问题,具体如下: - **MNLI**(Multi-Genre Natural Language Inference):跨多个领域判断句子之间的推理关系。 - **QQP**(Quora Question Pairs):检测 Quora 上的问题是否重复。 - **QNLI**(Question-NLI):通过自然语言推断回答给定问题。 - **RTE**(Recognizing Textual Entailment):识别文本蕴含关系。 - **STS-B**(Semantic Textual Similarity Benchmark):测量两个句子间的语义相似度。 - **MRPC**(Microsoft Research Paraphrase Corpus):判定两句话是否互为同义表达。 - **CoLA**(Corpus of Linguistic Acceptability):预测句子语法和语义接受程度。 - **SST-2**(Stanford Sentiment Treebank):分析电影评论的情感倾向。 - **WNLI**(Winograd NLI):解决代词消解问题。 上述任务涵盖了多种语言现象,包括但不限于逻辑推理、情感分析以及语义匹配等。 #### GLUE 在多任务学习中的作用 为了更好地支持多任务场景下的 NLP 模型开发,研究人员提出了基于 GLUE 的解决方案。例如,在一篇来自微软的研究论文中提到一种名为 MT-DNN(Multi-Task Deep Neural Networks)的方法,该方法能够有效提升单一模型在多项 NLU 任务上的综合表现[^2]。 此外,还有其他工作扩展了传统意义上的 GLUE 设计理念。比如 ASR-GLUE 将自动语音识别引入到标准 NLU 测试集中,进一步考察当输入存在不同程度噪音干扰时系统的鲁棒性表现[^4]。 #### 实际案例展示 以 BERT 和其变体为例说明如何利用 GLUE 数据集进行实验验证。下图展示了 SST-2 这一特定子任务上几种主流架构的表现情况对比图表显示即使面对加入随机扰动后的样本集合,“人类级”的基线仍然难以超越某些精心设计的人工智能算法。 ```python import matplotlib.pyplot as plt # Sample data representing accuracy across different noise levels. noise_levels = ['Clean', 'Low Noise', 'Medium Noise', 'High Noise'] human_performance = [0.87, 0.85, 0.83, 0.78] model_a_accuracy = [0.92, 0.88, 0.86, 0.80] plt.figure(figsize=(10, 6)) plt.plot(noise_levels, human_performance, label='Human Performance') plt.plot(noise_levels, model_a_accuracy, label="Model A's Accuracy", linestyle="--") plt.title('Accuracy Comparison Between Human and Model Under Various Noises on SST-2 Task') plt.xlabel('Noise Levels') plt.ylabel('Accuracy Score') plt.legend() plt.grid(True) plt.show() ``` 此代码片段绘制了一条折线图用来直观呈现随着环境复杂性的增加两者之间差距的变化趋势。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值