Data-Centric Financial Large Language Models

828 篇文章

已下架不支持订阅

本文介绍了一种以数据为中心的方法,通过预处理和预理解改进大型语言模型(LLM)处理财务任务的能力。提出财务LLM(FLLM),使用多任务提示微调并结合溯因增强推理(AAR)生成训练数据。实验显示,这种方法的FLLM在财务分析和解释任务上超越了基线模型,并开源了新的财务分析基准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Data-Centric Financial Large Language Models》的翻译。

以数据为中心的大语言金融模型

摘要

大型语言模型(LLM)有望用于自然语言任务,但在直接应用于金融等复杂领域时却举步维艰。LLM很难对所有相关信息进行推理和整合。我们提出了一种以数据为中心的方法,使LLM能够更好地处理财务任务。我们的关键见解是,与其一次用所有内容重载LLM,不如对数据进行预处理和预理解。我们使用基于多任务提示的微调创建了一个财务LLM(FLLM),以实现数据预处理和预理解。然而,每个任务的标记数据很少。为了克服手动注释成本,我们使用溯因增强推理(AAR)通过修改FLLM自己输出的伪标签来自动生成训练数据。实验表明,我们的以数据为中心的带有AAR的FLLM大大优于为原始文本设计的基线财务LLM,在财务分析和解释任务方面达到了最先进的水平。我们还开源了一个新的财务分析和解释基准。我们的方法为释放LLM在复杂现实世界领域的潜力提供了一条很有前途的途径。

1 引言

2 背景

3 方法

4 实验

5 结论和未来工作

本文提出了一种基于FLLM的以数据为中心的方法,以提高LLM在财务分析任务中的能力。为了克服标记数据的稀缺性,他们采用溯因增强推理来自动生成训练数据。实验表明,他们以数据为中心的金融LLM和溯因增强推理大大优于基线LLM,实现了最先进的金融分析和解释基准。以数据为中心的方

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值