CodeForces 1061C dpMultiplicity

本文探讨了一道复杂的算法题目,目标是从给定数组中找出所有满足特定条件的子序列,即每个元素能被其下标整除。通过分解因子和动态规划策略,文章详细解释了状态转移方程的设计思路,提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:https://blog.youkuaiyun.com/wjl_zyl_1314/article/details/84503454

 Multiplicity
time limit per test3 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
You are given an integer array a1,a2,…,an.

The array b is called to be a subsequence of a if it is possible to remove some elements from a to get b.

Array b1,b2,…,bk is called to be good if it is not empty and for every i (1≤i≤k) bi is divisible by i.

Find the number of good subsequences in a modulo 109+7.

Two subsequences are considered different if index sets of numbers included in them are different. That is, the values ​of the elements ​do not matter in the comparison of subsequences. In particular, the array a has exactly 2n−1 different subsequences (excluding an empty subsequence).

Input
The first line contains an integer n (1≤n≤100000) — the length of the array a.

The next line contains integers a1,a2,…,an (1≤ai≤106).

Output
Print exactly one integer — the number of good subsequences taken modulo 109+7.

Examples
input
2
1 2
output
3
input
5
2 2 1 22 14
output
13
Note
In the first example, all three non-empty possible subsequences are good: {1}, {1,2}, {2}
In the second example, the possible good subsequences are: {2}, {2,2}, {2,22}, {2,14}, {2}, {2,22}, {2,14}, {1}, {1,22}, {1,14}, {22}, {22,14}, {14}.

Note, that some subsequences are listed more than once, since they occur in the original array multiple times.
题意:
输入一个由n个数组构成的数列,现在从其中删除一些元素(但不能删完),要求删除后形成的新数列,满足每个位置的数值都能被整除下标。问有多少种删法能够得到满足条件的数列?(删法不同,即使最终结果相同也记为两种方法)
分析:

这一道题目是比较难处理的,但是仔细想一想,可以从因子入手,因为题目要求是可以放置x的地方下标必须可以整除嘛,所以,可以将其因子分解出来,但要注意处理4=2*2这样的情况;

然后就是推dp的状态转移方程:设当前的需要处理的数为9,那么其因子排序之后应是1、3、9

那么dp[9]=(dp[9]+dp[8])%mod;;;;;

dp[3]=(dp[3]+dp[2])%mod;;;;;;

。。。。。。。

为啥是这样子ni,可以去仔细想一想嘛,当发现当前这样下标出现,即当前这个位置是可以放数的,那么所有的组合情况不就是当前的位置有的个数+前一个位置有的个数;即dp[x]+=dp[x-1];这个意思就是说dp[x]的情况是由dp[x-1]推出的

感觉这个地方有点像01背包的降维优化的地方

#include<cstdio> 
#include<algorithm>
#include<cmath>
#include<iostream>
#include<map>
using namespace std;
const int N=2e5+100;
typedef long long ll;
const int INF=0x3f3f3f3f;
#define rep(i,a,b) for(int i=a;i<=b;i++)
const ll MOD=1e9+7;
ll dp[1001000];//存贮每一个位置的答案 
ll fac[1001000];//存储因子 
int n;
int main(){
	#ifndef ONLINE_JUDGE
	freopen("in.txt","r",stdin);
    #endif
	scanf("%d",&n);
	dp[0]=1;//0这个位置什么也不放也就是一种情况 
	rep(i,1,n){ll x;
		scanf("%lld",&x);
		int tot=0,j=1;
		for(j=1;j<x/j;j++){
			if(x%j==0){
				fac[tot++]=j;
				fac[tot++]=x/j;
			}
		}
		if(x%j==0&&j==x/j)//这里是处理2*2=4 或者3*3=9这类特殊情况 
		fac[tot++]=x/j;
		sort(fac,fac+tot);
		for(j=tot-1;j>=0;j--){
			dp[fac[j]]+=dp[fac[j]-1]	;
			dp[fac[j]]%=MOD;
		}
	}
	ll ans=0;
	for(int i=1;i<=1000000;i++){
		ans+=dp[i];
		ans%=MOD;
	}
	printf("%lld\n",ans);
	return 0;
}

 

### Codeforces Problem 1332C Explanation The provided references pertain specifically to problem 742B on Codeforces rather than problem 1332C. For an accurate understanding and solution approach for problem 1332C, it&#39;s essential to refer directly to its description and constraints. However, based on general knowledge regarding competitive programming problems found on platforms like Codeforces: Problem 1332C typically involves algorithmic challenges that require efficient data structures or algorithms such as dynamic programming, graph theory, greedy algorithms, etc., depending upon the specific nature of the task described within this particular question[^6]. To provide a detailed explanation or demonstration concerning **Codeforces problem 1332C**, one would need direct access to the exact statement associated with this challenge since different tasks demand tailored strategies addressing their unique requirements. For obtaining precise details about problem 1332C including any sample inputs/outputs along with explanations or solutions, visiting the official Codeforces website and navigating to contest number 1332 followed by examining section C is recommended. ```python # Example pseudo-code structure often seen in solving competitive coding questions. def solve_problem_1332C(input_data): # Placeholder function body; actual logic depends heavily on the specifics of problem 1332C. processed_result = process_input(input_data) final_answer = compute_solution(processed_result) return final_answer input_example = "Example Input" print(solve_problem_1332C(input_example)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值