WebGPU 中的缓冲映射机制

本文探讨WebGPU中的缓冲映射机制,强调其避免CPU与GPU访问显存冲突的设计。WebGPU的mapAsync方法提供异步映射,解映射则是同步操作。内容涵盖创建时映射、缓冲数据流向(CPU至GPU与GPU至CPU)的细节,以及在不同场景中的应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是缓冲映射

就不给定义了,直接简单的说,映射(Mapping)后的某块显存,就能被 CPU 访问。

三大图形 API(D3D12、Vulkan、Metal)的 Buffer(指显存)映射后,CPU 就能访问它了,此时注意,GPU 仍然可以访问这块显存。这就会导致一个问题:IO冲突,这就需要程序考量这个问题了。

WebGPU 禁止了这个行为,改用传递“所有权”来表示映射后的状态,颇具 Rust 的哲学。每一个时刻,CPU 和 GPU 是单边访问显存的,也就避免了竞争和冲突。

当 JavaScript 请求映射显存时,所有权并不是马上就能移交给 CPU 的,GPU 这个时候可能手头上还有别的处理显存的操作。所以,GPUBuffer 的映射方法是一个异步方法:

const someBuffer = device.createBuffe
内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值