系列博客目录
文章目录
- 系列博客目录
- 代码
- 代码中给我中文的注释
- 将每帧的特征堆叠起来,返回形状为(batch_size, num_frames, feature_dim)的特征return torch.stack(frame_features, dim=1) 如果我把视频分为十帧,那么这里的num_frames就是10吗
- 比如视频是围绕一盆花的环绕拍摄,那么我怎么通过时空注意力机制得到花的特征
- 给我代码
- 能不能通过Vit实现的时空注意力机制实现核心物体的检测
- temporal_feature, attn_weights = video_feature_extractor.temporal_attention(video_features) 这句代码调用的哪里的方法
- 总结
代码
下面是一个简化的示例代码,演示了如何使用 时空注意力机制 结合 Vision Transformer (ViT) 来处理视频数据。在这个例子中,我们假设你有一段视频,并且希望通过 ViT 提取每一帧图像的空间特征,再通过时空注意力机制来处理视频帧之间的时序信息。
步骤:
- 提取视频帧:从视频中提取每一帧作为图像。
- 使用 ViT 提取图像特征:每一帧图像通过 ViT 模型提取空间特征。
- 时空注意力机制:使用时空注意力机制来捕捉视频帧之间的时序关系。
代码实现:
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import ViTModel, ViTConfig
# Step 1: Video Frame Feature Extraction using Vision Transformer (ViT)
class VideoFeatureExtractor(nn.Module):
def __init__(self, vit_model_name="google/vit-base-patch16-224-in21k"):
super(VideoFeatureExtractor, self).__init__()
# Load pre-trained ViT model
self.vit = ViTModel.from_pretrained(vit_model_name)
def forward(self, video_frames):
"""
:param video_frames: A tensor of shape (batch_size, num_frames, channels, height, width)
:return: Extracted features of shape (batch_size, num_frames, feature_dim)
"""
batch_size, num_frames, _, _, _ = video_frames.shape
frame_features = []
# Process each video frame through ViT model
for i in range(num_frames):
frame = video_frames[:, i, :, :, :] # Get the i-th frame
frame = frame.view(-1, 3, 224, 224) # Adjust shape for ViT input
with torch.no_grad():
vit_output = self.vit(frame)
frame_features.append(vit_output.last_hidden_state[:, 0, :]) # Use [CLS] token embedding
# Stack frame features (shape: batch_size, num_frames, feature_dim)
return torch.stack(frame_features, dim=1)
# Step 2: Spatio-Temporal Attention Mechanism
class SpatioTemporalAttention(nn.Module):
def __init__(self, feature_dim, num_heads=4):
super(SpatioTemporalAttention, self).__init__()
self.num_heads = num_heads
self.feature_dim = feature_dim
self.attn = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads)
def forward(self, frame_features):
"""
:param frame_features: A tensor of shape (batch_size, num_frames, feature_dim)
:return: Attention-weighted frame features
"""
# Transpose for multi-head attention input shape (num_frames, batch_size, feature_dim)
frame_features = frame_features.permute(1, 0, 2)
# Apply multi-head attention
attn_output, _ = self.attn(frame_features, frame_features, frame_features)
# Transpose back (batch_size, num_frames, feature_dim)
return attn_output.permute(1, 0, 2)
# Step 3: Complete Model for Video Fake News Detection
class VideoFakeNewsModel(nn.Module):
def __init__(self, vit_model_name="google/vit-base-patch16-224-in21k", feature_dim=768, num_heads=4):
super(VideoFakeNewsModel, self).__init__()
self.feature_extractor = VideoFeatureExtractor(vit_model_name)
self.temporal_attention = SpatioTemporalAttention(feature_dim, num_heads)
self.fc = nn.Linear(feature_dim, 2) # Assuming binary classification (rumor or non-rumor)
def forward(self, video_frames):
"""
:param video_frames: A tensor of shape (batch_size, num_frames, channels, height, width)
:return: Predicted class probabilities
"""
# Extract features from each video frame using ViT
frame_features = self.feature_extractor(video_frames)
# Apply spatio-temporal attention
attended_features = self.temporal_attention(frame_features)
# Aggregate features across frames (e.g., by averaging)
aggregated_features = attended_features.mean(dim=1) # (batch_size, feature_dim)
# Make prediction
logits = self.fc(aggregated_features)
return F.softmax(logits, dim=-1)
# Example usage
if __name__ == "__main__":
# Generate random video data: (batch_size, num_frames, channels, height, width)
batch_size = 8
num_frames =
时空注意力机制结合ViT处理视频数据

最低0.47元/天 解锁文章
12万+

被折叠的 条评论
为什么被折叠?



