pytorch 打印模型的参数值

部署运行你感兴趣的模型镜像

pytorch 打印模型的参数值

对于简单的网络

例如全连接层Linear

可以使用以下方法打印linear层:

fc = nn.Linear(3, 5)
params = list(fc.named_parameters())
print(params.__len__())
print(params[0])
print(params[1])

输出如下:
在这里插入图片描述

由于Linear默认是偏置bias的,所有参数列表的长度是2。第一个存的是全连接矩阵,第二个存的是偏置。

对于稍微复杂的网络

例如MLP

mlp = nn.Sequential(
            nn.Dropout(p=0.3),
            nn.Linear(1024, 256),
            nn.Linear(256, 64),
            nn.Linear(64, 16),
            nn.Linear(16, 1)
        )
params = list(mlp.named_parameters())
print(params.__len__())

print(params[0])
print(params[1])

print(params[2])
print(params[3])

输出:
在这里插入图片描述

在这里插入图片描述

可以发现,堆叠起来的网络,参数是依次放置的。先是全连接的权重,然后偏置。然后是下一层网络的权重+偏置。依次进行下去。

这里有4层fc,4*2=8.所以一共有8个参数矩阵。

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值