pytorch tensor clone, detach 之后梯度的变化

本文深入探讨了PyTorch中clone()与detach()函数的区别与应用场景。clone()函数用于创建一个与原张量完全相同但独立存在于计算图中的新张量,而detach()则用于生成一个与原张量共享内存但脱离计算图的新张量,避免了梯度计算。
部署运行你感兴趣的模型镜像

clone

clone()函数可以返回一个完全相同的tensor,新的tensor开辟新的内存,但是仍然留在计算图中。

detach

detach()函数可以返回一个完全相同的tensor,新的tensor开辟与旧的tensor共享内存,新的tensor会脱离计算图,不会牵扯梯度计算。

非常推荐大家阅读这篇博客:https://blog.youkuaiyun.com/winycg/article/details/100813519

您可能感兴趣的与本文相关的镜像

PyTorch 2.7

PyTorch 2.7

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值