拟投顶会的论文详细提纲 Diffusion-based 3D Human Mesh Recovery from Multi-view Images with Segmentation Masks

Title: Diffusion-based 3D Human Mesh Recovery from Multi-view Images with Segmentation Masks

Abstract:

This paper addresses the challenging problem of 3D human mesh recovery from multi-view images in the presence of occlusions. We propose a novel diffusion-based framework that leverages the power of multi-view geometry and segmentation masks to achieve robust and accurate mesh reconstruction. Our approach incorporates a pre-trained diffusion model as the backbone for feature extraction and integrates it with a multi-view fusion module that effectively combines information from different viewpoints. Additionally, we introduce a segmentation-guided attention mechanism that focuses on the relevant regions of the input images, thereby improving the robustness to occlusions. We conduct extensive experiments on benchmark datasets and demonstrate that our method outperforms state-of-the-art approaches in terms of both accuracy and efficiency.

Keywords:

  • 3D Human Mesh Recovery
  • Multi-view Images
  • Segmentation Masks
  • Diffusion Models
  • Occlusion Handling

TOC:

1. Introduction

  • 1.1 Problem Statement and Motivation
    • 1.1.1 Challenges in Occluded Human Mesh Recovery
    • 1.1.2 Advantages of Multi-view Images and Segmentation Masks
    • 1.1.3 Potential of Diffusion Models for 3D Vision
  • 1.2 Related Work
    • 1.2.1 Monocular Human Mesh Recovery
      • 1.2.1.1 Optimization-based Methods
      • 1.2.1.2 Learning-based Methods
    • 1.2.2 Multi-view Human Mesh Recovery
      • 1.2.2.1 Volumetric Reconstruction
      • 1.2.2.2 Multi-view Fusion
    • 1.2.3 Diffusion Models for 3D Vision
      • 1.2.3.1 Point Cloud Generation
      • 1.2.3.2 Shape and Pose Estimation
  • 1.3 Contributions
    • 1.3.1 Novel Diffusion-based Framework
    • 1.3.2 Multi-view Fusion Module
    • 1.3.3 Segmentation-guided Attention Mechanism
  • 1.4 Paper Organization

2. Proposed Method

  • 2.1 Overview of the Framework
    • 2.1.1 Input and Output
    • 2.1.2 Pipeline Description
  • 2.2 Multi-view Feature Extraction
    • 2.2.1 Camera Calibration and Pose Estimation
    • 2.2.2 Feature Extraction from Each View
    • 2.2.3 Multi-view Feature Fusion
  • 2.3 Segmentation-guided Attention Module
    • 2.3.1 Segmentation Mask Processing
    • 2.3.2 Attention Mechanism Design
    • 2.3.3 Integration with Diffusion Model
  • 2.4 Diffusion-based Mesh Reconstruction
    • 2.4.1 Pre-trained Diffusion Model
    • 2.4.2 Mesh Parameter Regression
    • 2.4.3 Loss Function
  • 2.5 Training Strategy
    • 2.5.1 Data Augmentation
    • 2.5.2 Optimization Algorithm
    • 2.5.3 Hyperparameter Tuning

3. Experiments

  • 3.1 Datasets and Evaluation Metrics
    • 3.1.1 Human3.6M Dataset
    • 3.1.2 CMU Panoptic Dataset
    • 3.1.3 Evaluation Metrics (CD, P2S, M2M)
  • 3.2 Implementation Details
    • 3.2.1 Hardware and Software
    • 3.2.2 Training Settings
  • 3.3 Quantitative Results
    • 3.3.1 Comparison with State-of-the-art Methods
      • 3.3.1.1 Monocular Methods
      • 3.3.1.2 Multi-view Methods
    • 3.3.2 Ablation Studies
      • 3.3.2.1 Number of Views
      • 3.3.2.2 Segmentation Mask Quality
      • 3.3.2.3 Diffusion Model Architecture
  • 3.4 Qualitative Results
    • 3.4.1 Visual Comparison
    • 3.4.2 Failure Cases

4. Discussion

  • 4.1 Analysis of Results
    • 4.1.1 Impact of Multi-view Fusion
    • 4.1.2 Effectiveness of Segmentation-guided Attention
    • 4.1.3 Generalization Ability
  • 4.2 Limitations and Future Work
    • 4.2.1 Handling Extreme Occlusions
    • 4.2.2 Real-time Performance
    • 4.2.3 Extension to Other 3D Tasks

5. Conclusion

  • 5.1 Summary of Findings
  • 5.2 Contributions and Impact
  • 5.3 Future Directions

References

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值