As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.
We call a set S of tree nodes valid if following conditions are satisfied:
- S is non-empty.
- S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
.
Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007 (109 + 7).
The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).
The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).
Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.
Print the number of valid sets modulo 1000000007.
1 4 2 1 3 2 1 2 1 3 3 4
8
0 3 1 2 3 1 2 2 3
3
4 8 7 8 7 5 4 6 4 10 1 6 1 2 5 8 1 3 3 5 6 7 3 4
41
In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.
给一棵树,问它有多少子树,子树的最大权值与最小权值之差不大于d,而且非空
依次选取每个节点作为根节点,默认根节点为权值最大(每个子树都可看作权值最大点为根节点),由题意知,父节点与子节点只有两种关系
连接或不连接,若不连接,则该子节点之后的节点都无法连接(题目规则2),两节点相等的情况可能重复考虑,规定只能从小标号到达标号或
者相反即可避免重复,暴力搜索dfs
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<map>
#include<queue>
#include<algorithm>
#include<cmath>
#include<vector>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define CL(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long LL;
const int maxn = 1e4+10;
const int MOD = 1e9+7;
int val[maxn];
int d;
vector <int > G[maxn];
LL dfs(int i, int re, int t){
LL cnt = 1;
for(int j = 0; j < G[i].size(); j++){
int c = G[i][j];
if(c == re || val[t] < val[c] || (val[t] == val[c] && c < t) || val[t] - val[c] > d) continue;
cnt = cnt * (dfs(c, i, t)+1) % MOD;
}
return cnt;
}
int main(){
int a, b, n, kcase = 1;
scanf("%d%d", &d, &n);
for(int i = 1; i <= n; i++) scanf("%d", &val[i]);
for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
G[a].push_back(b); G[b].push_back(a);
}
LL ans = 0;
for(int i = 1; i <= n; i++){
ans = (ans + dfs(i, 0, i)) % MOD;
}
printf("%lld\n", ans);
return 0;
}