批标准化(batch normalization)

一.概述

1.为什么需要BN

我们知道网络一旦train起来,那么参数就要发生更新,除了输入层的数据外(因为输入层数据,我们已经人为的为每个样本归一化),后面网络每一层的输入数据分布是一直在发生变化的,因为在训练的时候,前面层训练参数的更新将导致后面层输入数据分布的变化。以网络第二层为例:网络的第二层输入,是由第一层的参数和input计算得到的,而第一层的参数在整个训练过程中一直在变化,因此必然会引起后面每一层输入数据分布的改变。我们把网络中间层在训练过程中,数据分布的改变称之为:“Internal Covariate Shift”。BN的提出,就是要解决在训练过程中,中间层数据分布发生改变的情况。

2.作用:

 

a中左图是没有经过任何处理的输入数据,曲线是sigmoid函数,如果数据在梯度很小的区域,那么学习率就会很慢甚至陷入长时间的停滞。减均值除方差后,数据就被移到中心区域如右图所示,对于大多数激活函数而言,这个区域的梯度都是最大的或者是有梯度的(比如ReLU),这可以看做是一种对抗梯度消失的有效手段。对于一层如此,如果对于每一层数据都那么做的话,数据的分布总是在随着变化敏感的区域,相当于不用考虑数据分布变化了,这样训练起来更有效率。

那么为什么要有第4步,不是仅使用减均值除方差操作就能获得目的效果吗?我们思考一个问题,减均值除方差得到的分布是正态分布,我们能否认为正态分布就是最好或最能体现我们训练样本的特征分布呢?不能,比如数据本身就很不对称,或者激活函数未必是对方差为1的数据最好的效果,比如Sigmoid激活函数,在-1~1之间的梯度变化不大,那么非线性变换的作用就不能很好的体现,换言之就是,减均值除方差操作后可能会削弱网络的性能!针对该情况,在前面三步之后加入第4步完成真正的batch normalization。

BN的本质就是利用优化变一下方差大小和均值位置,使得新的分布更切合数据的真实分布,保证模型的非线性表达能力。BN的极端的情况就是这两个参数等于mini-batch的均值和方差,那么经过batch normalization之后的数据和输入完全一样,当然一般的情况是不同的。

 

对于每个隐层神经元,把逐渐向非线性函数映射后向取值区间极限饱和区靠拢的输入分布强制拉回到均值为0方差为1的比较标准的正态分布,使得非线性变换函数的输入值落入对输入比较敏感的区域,以此避免梯度消失问题。

因为梯度一直都能保持比较大的状态,所以很明显对神经网络的参数调整效率比较高,就是变动大,就是说向损失函数最优值迈动的步子大,也就是说收敛地快。

经过BN后,大部分Activation的值落入非线性函数的线性区内,其对应的导数远离导数饱和区,这样来加速训练收敛过程。

 

BN在深层神经网络的作用非常明显:若神经网络训练时遇到收敛速度较慢,或者“梯度爆炸”等无法训练的情况发生时都可以尝试用BN来解决。同时,常规使用情况下同样可以加入BN来加速模型训练,甚至提升模型精度。

有轻微正则化的作用,因为BN对隐藏单元施加了噪音。

二.实现

 

对于每一个mini-batch做BN:

 如上图所示,BN步骤主要分为4步:

  1. 求每一个训练批次数据的均值
  2. 求每一个训练批次数据的方差
  3. 使用求得的均值和方差对该批次的训练数据做归一化,获得0-1分布。其中εε是为了避免除数为0时所使用的微小正数。
  4. 尺度变换和偏移:将xi乘以γ调整数值大小,再加上β增加偏移后得到yi,这里的γ是尺度因子,β是平移因子。这一步是BN的精髓,由于归一化后的xi基本会被限制在正态分布下,使得网络的表达能力下降。为解决该问题,我们引入两个新的参数:γ,β。 γ和β是在训练时网络自己学习得到的。

三.预测过程 

在训练时,我们会对同一批的数据的均值和方差进行求解,进而进行归一化操作。但是对于预测时我们的均值和方差怎么求呢?比如我们预测单个样本时,那还怎么求均值和方法呀!其实是这种样子的,对于预测阶段时所使用的均值和方差,其实也是来源于训练集。比如我们在模型训练时我们就记录下每个batch下的均值和方差,待训练完毕后,我们求整个训练样本的均值和方差期望值,作为我们进行预测时进行BN的的均值和方差:

最后测试阶段,BN的使用公式就是:

四.补充说明

关于BN的使用位置,在CNN中一般应作用与非线性激活函数之前,s型函数s(x)的自变量x是经过BN处理后的结果。因此前向传导的计算公式就应该是: 

 其实因为偏置参数b经过BN层后其实是没有用的,最后也会被均值归一化,当然BN层后面还有个β参数作为偏置项,所以b这个参数就可以不用了。因此最后把BN层+激活函数层就变成了:

<think>嗯,用户想了解批量归一化(Batch Normalization)的概念、原理及应用。首先,我需要回忆一下批量归一化的基本知识。记得它是由Sergey Ioffe和Christian Szegedy在2015年提出的,主要是用来解决深度神经网络训练中的内部协变量偏移问题。这个概念可能有点抽象,需要解释清楚。 内部协变量偏移是指每一层输入的分布随着前一层参数的变化而发生变化,导致训练变得困难。批量归一化通过对每一层的输入进行标准化处理,使其均值接近0,方差接近1,从而加速训练并提高模型稳定性。 接下来是原理部分。批量归一化通常在激活函数之前应用,对每个小批量数据进行处理。步骤包括计算均值和方差、标准化、缩放和平移。这里需要注意数学公式的正确性,比如标准化公式应该是减均值除以标准差加上一个epsilon防止除零。然后使用可学习的参数gamma和beta来恢复网络的表达能力。 然后是应用场景。比如加速训练、允许更高的学习率、减少对初始化的依赖、起到轻微的正则化效果等。可能还需要提到在卷积神经网络中的应用,比如在激活函数之后应用,或者在卷积层和全连接层的不同处理方式。 用户可能还关心批量归一化的优缺点,比如在Batch较小时效果不佳,这时候可能转向其他归一化方法,比如Layer Normalization或者Instance Normalization。另外,在推理阶段,使用的是整个训练集的均值和方差的移动平均,而不是小批量的统计量,这一点也需要说明。 参考引用部分,虽然用户提供的引用中没有直接提到批量归一化,但可能需要关联到优化指标或初始化方法。不过可能更适合直接引用原始论文或其他可靠来源,但根据用户提供的引用,可能需要调整。比如引用[1]提到优化指标,可以联系到批量归一化如何作为优化训练过程的技术。而引用[2]关于He初始化,可以对比批量归一化如何减少对初始化的依赖。 最后,生成相关问题的时候,要围绕批量归一化的原理、实现细节、与其他技术的比较、应用中的挑战等展开。比如与其他归一化技术的区别,实际应用中的注意事项,或者如何与不同的初始化方法结合使用。 需要确保回答结构清晰,分点解释,并且使用正确的中文术语。数学公式要使用$$...$$格式,例如标准化过程。同时,代码示例可能展示批量归一化的实现,比如在TensorFlow或PyTorch中的使用方式。 可能还需要注意用户的背景,如果是深度学习的学习者,可能需要更详细的原理解释,而如果是实践者,可能更关注应用和调参技巧。但根据问题描述,用户需要概念、原理和应用,所以应全面覆盖这些方面。 检查是否有遗漏的关键点,比如批量归一化在训练和测试阶段的不同处理,为什么能加速收敛,以及其正则化效果的原因。同时,确保LaTeX格式正确,例如变量用$符号包裹,独立公式用双美元符号。 最后,确保回答中引用的部分自然添加标识,比如在提到减少对初始化依赖时引用[2]关于初始化的内容,或者在提到优化训练目标时引用[1]中的优化指标概念。</think>### 批量归一化(Batch Normalization)的概念、原理及应用 #### 1. **概念** 批量归一化(Batch Normalization, BN)是深度学习中一种用于加速训练、提升模型稳定性的技术。其核心思想是对神经网络每一层的输入进行标准化处理,使得输入分布接近均值为0、方差为1的高斯分布,从而缓解**内部协变量偏移**(Internal Covariate Shift)问题[^1]。 #### 2. **原理** **步骤详解**(以全连接层为例): - **输入**:某一层的输入为小批量数据 $B = \{x_1, x_2, ..., x_m\}$。 - **计算均值和方差**: $$ \mu_B = \frac{1}{m} \sum_{i=1}^m x_i, \quad \sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2 $$ - **标准化**: $$ \hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad (\epsilon \text{为防除零的小常数}) $$ - **缩放和平移**(引入可学习参数 $\gamma$ 和 $\beta$): $$ y_i = \gamma \hat{x}_i + \beta $$ 此操作使网络能够自适应地恢复数据的表达能力[^2]。 #### 3. **应用** - **加速训练**:标准化后的输入分布更稳定,允许使用更高的学习率。 - **缓解梯度消失/爆炸**:归一化减少了激活值的动态范围,梯度更易传播。 - **正则化效果**:小批量数据的噪声对模型参数更新有轻微正则化作用。 - **降低对初始化的敏感度**:参数初始化的影响被削弱,减少了对复杂初始化方法的依赖。 **应用场景示例**: - **卷积神经网络**:对每个特征图(Channel)独立归一化。 - **循环神经网络**:需结合时间步调整归一化方式。 - **生成对抗网络**(GANs):稳定生成器和判别器的训练。 #### 4. **代码示例(PyTorch)** ```python import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(100, 50) self.bn = nn.BatchNorm1d(50) # 批量归一化层 self.relu = nn.ReLU() def forward(self, x): x = self.fc(x) x = self.bn(x) # 通常在激活函数前应用BN x = self.relu(x) return x ``` #### 5. **注意事项** - **推理阶段**:使用训练时计算的移动平均 $\mu$ 和 $\sigma$,而非实时统计量。 - **小批量问题**:当 Batch Size 过小时,统计量不准确,可改用 Layer Normalization 或 Group Normalization
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值