题意:
给一棵树,k个操作,每次将u-v的路径上的点权都加一。
问最后最大的点权。
做法:
树上差分裸题= =
找u-v的lca,然后将路径上的点+1相当于c[u]++,c[v]++,c[lca]–,c[fa[lca]]–.
c[]是差分数组。
代码:
/*************************************************************
Problem: bzoj 4390 [Usaco2015 dec]Max Flow
User: fengyuan
Language: C++
Result: Accepted
Time: 1852 ms
Memory: 7112 kb
Submit_Time: 2018-01-02 16:13:23
*************************************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 50010;
int n, m, cnt, ans;
int head[N], depth[N], f[N][20], c[N];
struct Edge{ int to, nex; }e[N<<1];
inline void add(int x, int y){ e[++ cnt].to = y; e[cnt].nex = head[x]; head[x] = cnt; }
inline void dfs(int u, int lst, int s)
{
depth[u] = s; f[u][0] = lst;
for(int i = head[u]; i; i = e[i].nex) {
int v = e[i].to; if(v == lst) continue;
dfs(v, u, s+1);
}
}
inline int LCA(int x, int y)
{
if(depth[x] < depth[y]) swap(x, y);
int tmp = depth[x] - depth[y];
for(int i = 17; i >= 0; i --)
if(tmp>>i&1) x = f[x][i];
if(x == y) return x;
for(int i = 17; i >= 0; i --)
if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
return f[x][0];
}
inline void dfs2(int u, int lst)
{
for(int i = head[u]; i; i = e[i].nex) {
int v = e[i].to; if(v == lst) continue;
dfs2(v, u); c[u] += c[v];
}
ans = max(ans, c[u]);
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i < n; i ++) {
int x, y; scanf("%d%d", &x, &y);
add(x, y); add(y, x);
} dfs(1, 0, 0);
for(int j = 1; j <= 17; j ++)
for(int i = 1; i <= n; i ++) f[i][j] = f[f[i][j-1]][j-1];
while(m --) {
int x, y, z; scanf("%d%d", &x, &y);
z = LCA(x, y);
c[x] ++; c[y] ++; c[z] --; c[f[z][0]] --;
}
dfs2(1, 0);
printf("%d\n", ans);
return 0;
}