python:傅里叶分析,快速傅里叶变换 FFT

本文介绍了使用Python进行傅里叶分析,包括离散傅里叶变换(DFT)的概念及其计算问题,快速傅里叶变换(FFT)的优化,以及采样频率和采样定理在信号处理中的重要性。通过示例展示了如何用Python代码实现FFT并分析锯齿信号的频谱。

使用python进行傅里叶分析,傅里叶变换 FFT  的一些关键概念的引入:

1.1.离散傅里叶变换(DFT)
    离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,经过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。可是它的致命缺点是:计算量太大,时间复杂度过高,当采样点数过高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。
1.2.快速傅里叶变换(FFT)
    计算量更小的离散傅里叶的一种实现方法。快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
1.3.采样频率以及采样定率
采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫做采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。

采样定理 ,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通信与信号处理学科中的一个重要基本结论。采样定理指出,若是信号是带限的,而且采样频率高于信号带宽的两倍,那么,原来的连续信号能够从采样样本中彻底重建出来。

1.4.如何理解采样定理
    在对连续信号进行离散化的过程当中,不免会损失不少信息,就拿一个简单地正弦波而言,若是我1秒内就选择一个点,很显然,损失的信号太多了,光着一个点我根本不知道这个正弦信号究竟是什么样子的,天然也没有办法根据这一个采样点进行正弦波的还原,很明显,我采样的点越密集,那越接近原来的正弦波原始的样子,天然损失的信息越少,越方便还原正弦波。

采样定理说明采样频率与信号频率之间的关系,是连续信号离散化的基本依据。 它为采样率创建了一个足够的条件,该采样率容许离散采样序列从有限带宽的连续时间信号中捕获全部信息。
编写 test_fft_1.py 如下


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值