Problem :旅行

一道关于旅行的数学问题,求解在满足特定条件下的最大列车搭乘费用。题目要求根据团队的购票申请,选择能使列车收益最大的组合。输入包括站点数、申请数和列车最大载客量,输出为最大搭乘费用。示例显示了如何计算最大费用。解题关键在于遵循所有或无的购票原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem :旅行

这道题本博主也做了很久,后来,在某华恋~韵的评讲下才明白的,具体如下:
Description
某趟列车的最大载客容量为V人,沿途共有n个停靠站,其中始发站为第1站,终点站为第n站。在第1站至第n-1站之
间,共有m个团队申请购票搭乘,若规定:
(1)对于某个团队的购票申请,要么全部满足,要么全部拒绝,即不允许只满足部分。
(2)每个乘客的搭乘费用为其所乘站数。问:应如何选择这些购票申请,能使该趟列车获得最大
的搭乘费用?其中,每个团队的购票申请格式是以空格分隔的三个整数:a b t,即表示有t个人需要从第a站点乘至第b站点(注:每个团队的所有人员都必须同时在a站上车,且必须同时在后面的b站下车)。

Input
有若干行。其中:
第1行只有三个整数n,m,v,分别表示站点数、申请数、列车的最大载客容量。
这三个整数之间都以一个空格分隔。
第2行至第m+1行,每行有三个整数,中间都以一个空格分隔。
其中第k+1行的三个整数a,b,t表示第k个申请,含义为:有t个人需要从第a站乘至第b站。
1≤n≤10;1≤m≤18,1<=V<=200

Output
只有一行,该行只有一个整数,为该列车能获得的最大搭乘费用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值