C++笔试题 奇妙旅行

奇妙旅行

描述

小熊住在由n个城镇(城镇编号from 1 to n)组成的国家里,n-1条双向联通的路将这n个城镇相互连接。所以从一个城镇旅行到其他任意一个城镇都是可行的。小熊想要进行一次旅行,它选择一对城镇(u,v)(u ≠ v),然后选择从u到v的最短路径完成旅行。(注意:(u,v)和(v,u)被认为是不同旅行。)
然而,在小熊的国家里,有2个特殊的城镇,一个叫伦敦(编号x),一个叫巴黎(编号y)。伦敦是一个被花香萦绕的小镇,巴黎是一个到处都是蜜蜂的小镇。因此,小熊在旅行过程中,如果先经过伦敦,再经过巴黎,他就会遭到蜜蜂的疯狂攻击。
请你帮帮小熊计算出有多少对(u,v)可供选择来完成旅行计划。

输入描述

第一行包含3个整数,n,x,y(1 ≤n≤3000, 1≤x,y≤n , x ≠ y) ,n表示城镇数量,x表示伦敦的编号,y表示巴黎的编号。
接下来n-1行,每行包括两个整数a,b(1≤a,b≤n1≤a,b≤n, a≠b),描述了城镇a和城镇b之间存在一条道路。
输入保证,任意两点都彼此联通(所给的城镇和道路组成了一棵树)。

输出描述

输出有多少对(u,v)可供小熊选择来完成旅行。

样例输入 1

3 1 3
1 2
2 3

样例输出 1

5

样例输入 2

3 1 3
1 2
1 3

样例输出 2

4

提示

第一个example中,小熊有5种选择
(1,2): 他的路线是 1→2
(2,3): 他的路线是 2→3
(3,2): 他的路线是 3→2
(2,1): 他的路线是 2→1
(3,1): 他的路线是 3→2→1
小熊不能选择(1,3)。因为如果它选择这个路线,他会先访问城镇1(伦敦)再访问城镇3(巴黎),它会遭到蜜蜂的攻击,这会让小熊受伤。

// WonderfulTrip.cpp
#include <iostream>
#include <fstream>
#include <vector>
#include <set>
#include <string>     // to_string(), C++ 11
#include <climits>    // INT_MAX
#include <algorithm>  // min()

using namespace std;

// #define UNIT_TEST 
// #define PRINT_PATH_INFO 

// save the shortest Distance information from starting vertex to each vertex 
struct Distance
{
    string      pathInfo;
    vector<int> pathVec;
    int         value;
    bool        visited;
    Distance()
    {
        visited  = false;
        value    = 0;
        pathInfo = "";
    }
};

class Graph_DG
{
private:
    static const int max_weight = numeric_limits<int>::max(); // INT_MAX
    int       m_vertexLondon;
    int       m_vertexParis;
    int       m_numOfVertexs;  // number of vertexs
    int       m_numOfEdges;    // number of edges
    int     **m_adjaMatrix;    // adjacent Matrix
    Distance *m_dist;          // distance 

    set<int> m_vertexInSet;
    set<int> m_vertexOutSet;

    bool checkValuesScope(int vertexIn, int vertexOut, int weight);
    void generateGraphDat();
    void createGraph();

    void Dijkstra(int vertexIn);
    void reinitDistance();

    int getNumOfPathsOfOneVertex(int vertexIn);

public:
    ~Graph_DG();

    int getTotalNumOfPaths();
};

Graph_DG::~Graph_DG()
{
    delete [] m_dist;
    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        delete this->m_adjaMatrix[i];
    }
    delete m_adjaMatrix;
}

void Graph_DG::generateGraphDat()
{
    int vertexIn, vertexOut;
    vector<int> vertexs;

    cin >> m_numOfVertexs >> m_vertexLondon >> m_vertexParis;

    m_numOfEdges = 0;
    for (int i = 1; i <= m_numOfVertexs - 1; i++)
    {
        cin >> vertexIn >> vertexOut;
        vertexs.push_back(vertexIn);
        vertexs.push_back(vertexOut);
        m_numOfEdges += 2;
    }

    ofstream out;
    out.open("graph.dat");
    out << m_numOfVertexs << " " << m_numOfEdges << endl;

    for (unsigned int i = 0; i < vertexs.size() - 1; i += 2)
    {
        out << vertexs[i] << " " << vertexs[i + 1] << " " << 1 << endl;
        out << vertexs[i + 1] << " " << vertexs[i] << " " << 1 << endl;
    }
    out.close();
}

bool Graph_DG::checkValuesScope(int vertexIn, int vertexOut, int weight)
{
    if (vertexIn < 1 || vertexOut < 1 || vertexIn > m_numOfVertexs ||
        vertexOut > m_numOfVertexs || weight < 0)
    {
        return false;
    }
    return true;
}

void Graph_DG::reinitDistance()
{
    delete [] m_dist;

    m_dist = new Distance [this->m_numOfVertexs];
    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        m_dist[i].value = 0;
    }
}

void Graph_DG::createGraph()
{
    int vertexIn;
    int vertexOut;
    int weight;

    ifstream ifp("graph.dat");
    ifp >> this->m_numOfVertexs >> this->m_numOfEdges;

    // allocate space for m_adjaMatrix and m_dist 
    m_adjaMatrix = new int*[this->m_numOfVertexs];
    m_dist = new Distance[this->m_numOfVertexs];

    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        m_adjaMatrix[i] = new int[this->m_numOfVertexs];
        for (int k = 0; k < this->m_numOfVertexs; k++)
        {
            // initialize each element of adjacent matrix 
            m_adjaMatrix[i][k] = max_weight;
        }
    }

    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        m_adjaMatrix[i][i] = 0;
        m_dist[i].value    = 0;
    }

    for (int i = 0; i < this->m_numOfEdges; i++)
    {
        ifp >> vertexIn >> vertexOut >> weight;

        if (true == checkValuesScope(vertexIn, vertexOut, weight))
        {
            m_vertexInSet.insert(vertexIn);
            m_vertexOutSet.insert(vertexOut);
#ifdef UNIT_TEST
            cout << "V" << vertexIn << " -- " << weight << " --> V" << vertexOut << endl;
#endif
            // assign weight value for vertexIn to vertexOut
            m_adjaMatrix[vertexIn - 1][vertexOut - 1] = weight;
        }
    }
    ifp.close();
}

void Graph_DG::Dijkstra(int vertexIn)
{
    // Firstly, initialize distance array 
    for (int vertexIdx = 0; vertexIdx < this->m_numOfVertexs; vertexIdx++)
    {
        // set the current pathInfo
        m_dist[vertexIdx].pathInfo = "V" + to_string(vertexIn)
            + " --> V" + to_string(vertexIdx + 1);
        m_dist[vertexIdx].value = m_adjaMatrix[vertexIn - 1][vertexIdx];
        m_dist[vertexIdx].pathVec.push_back(vertexIn);
        m_dist[vertexIdx].pathVec.push_back(vertexIdx + 1);
    }

    // calculate the shortest distance from vertex to other vertexs
    for (int m_numOfVertexs = 1; m_numOfVertexs < this->m_numOfVertexs; m_numOfVertexs++)
    {
        int tmpVertex = 0;  // save the minimum vertex index in array m_dist[]
        int min_value = max_weight; // save the minimum value
        for (int vertexIdx = 0; vertexIdx < this->m_numOfVertexs; vertexIdx++)
        {
            if (!m_dist[vertexIdx].visited && m_dist[vertexIdx].value < min_value)
            {
                min_value = m_dist[vertexIdx].value;
                tmpVertex = vertexIdx;
            }
        }

        // add tmpVertex to shortest distance pathInfo information
        m_dist[tmpVertex].visited = true;

        for (int vertexIdx = 0; vertexIdx < this->m_numOfVertexs; vertexIdx++)
        {
            // the condition m_adjaMatrix[tmpVertex][i]!=max_weigh is required
            if (!m_dist[vertexIdx].visited && m_adjaMatrix[tmpVertex][vertexIdx]!=max_weight &&
                (m_dist[tmpVertex].value+m_adjaMatrix[tmpVertex][vertexIdx])<m_dist[vertexIdx].value)
            {
                // if new edge could impact other vertexs which are not visited, update its 
                // distance pathInfo information
                m_dist[vertexIdx].value = m_dist[tmpVertex].value + m_adjaMatrix[tmpVertex][vertexIdx];
                m_dist[vertexIdx].pathInfo = m_dist[tmpVertex].pathInfo+" --> V"+to_string(vertexIdx+1);
                m_dist[vertexIdx].pathVec  = m_dist[tmpVertex].pathVec;
                m_dist[vertexIdx].pathVec.push_back(vertexIdx + 1);
            }
        }
    }
}

int Graph_DG::getNumOfPathsOfOneVertex(int vertexIn)
{
    Dijkstra(vertexIn);

    int  numOfPaths = 0;
    bool foundLondonTown;
    bool foundParisTown;

    for (int i = 0; i != this->m_numOfVertexs; i++)
    {
        foundLondonTown = false;
        foundParisTown  = false;

        if (m_dist[i].value > 0 && m_dist[i].value != max_weight)
        {
            int size = m_dist[i].pathVec.size();

            for (int j = 0; j < size; j++)
            {
                if (m_dist[i].pathVec[j] == this->m_vertexLondon)
                {
                    foundLondonTown = true;
                }
                else if (m_dist[i].pathVec[j] == this->m_vertexParis &&
                         true == foundLondonTown)
                {
                    foundParisTown = true;
                }
            }

            if (false == foundParisTown)
            {
                numOfPaths++;
#ifdef PRINT_PATH_INFO
                for (int j = 0; j < size - 1; j++)
                {
                    cout << m_dist[i].pathVec[j] << " -> ";
                }
                cout << m_dist[i].pathVec[size - 1] << endl;
#endif
            }
        }
    }
    return numOfPaths;
}

int Graph_DG::getTotalNumOfPaths()
{
    generateGraphDat();  // generate graph.dat according to input data 

    createGraph();       // create directed graph according to graph.dat

    int numOfPaths = 0;
    for (auto vertexIn : m_vertexInSet)  // C++ 11 feature
    {
        numOfPaths += getNumOfPathsOfOneVertex(vertexIn);

        reinitDistance();  // re-initialize distance information for next time
    }

    return numOfPaths;
}

int main()
{
    Graph_DG graph;

    cout << graph.getTotalNumOfPaths() << endl;

    return 0;
}

C++代码 (不生成中间文件graph.dat, 直接读取数据生成Graph)

#include <iostream>
#include <fstream>
#include <vector>
#include <set>
#include <string>     // to_string(), C++ 11
#include <climits>    // INT_MAX
#include <algorithm>  // min()
#include <cassert>    // assert()

using namespace std;

// #define UNIT_TEST 
// #define PRINT_PATH_INFO 

// save the shortest Distance information from starting vertex to each vertex 
struct Distance
{
    string      pathInfo;
    vector<int> pathVec;
    int         value;
    bool        visited;
    Distance()
    {
        visited  = false;
        value    = 0;
        pathInfo = "";
    }
};

class Graph_DG
{
private:
    static const int max_weight = numeric_limits<int>::max(); // INT_MAX
    int       m_vertexLondon;
    int       m_vertexParis;
    int       m_numOfVertexs;  // number of vertexs
    int       m_numOfEdges;    // number of edges
    int     **m_adjaMatrix;    // adjacent Matrix
    Distance *m_dist;          // distance 

    set<int> m_vertexInSet;
    set<int> m_vertexOutSet;

    void readDataAndCreateGraph();
    bool checkValuesScope(int vertexIn, int vertexOut, int weight);
    void reinitDistance();

    void Dijkstra(int vertexIn);

    int getNumOfPathsOfOneVertex(int vertexIn);

public:
    ~Graph_DG();
    int getTotalNumOfPaths();
};

Graph_DG::~Graph_DG()
{
    delete [] m_dist;
    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        delete this->m_adjaMatrix[i];
    }
    delete m_adjaMatrix;
}

bool Graph_DG::checkValuesScope(int vertexIn, int vertexOut, int weight)
{
    if (vertexIn < 1 || vertexOut < 1 || vertexIn > m_numOfVertexs ||
        vertexOut > m_numOfVertexs || weight < 0 || vertexIn == vertexOut)
    {
        return false;
    }
    return true;
}

void Graph_DG::reinitDistance()
{
    delete [] m_dist;

    m_dist = new Distance [this->m_numOfVertexs];
    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        m_dist[i].value = 0;
    }
}

void Graph_DG::readDataAndCreateGraph()
{
    cin >> m_numOfVertexs >> m_vertexLondon >> m_vertexParis;
    
    // 1 ≤n≤3000, 1≤x, y≤n, x ≠ y
    assert(m_numOfVertexs >= 1 && m_numOfVertexs <= 3000);
    assert(m_vertexLondon <= m_numOfVertexs && m_vertexLondon >= 1);
    assert(m_vertexParis  <= m_numOfVertexs && m_vertexParis  >= 1);
    assert(m_vertexLondon != m_vertexParis);

    m_numOfEdges = 2*(m_numOfVertexs - 1);

    // allocate space for m_adjaMatrix and m_dist 
    m_adjaMatrix = new int*[this->m_numOfVertexs];
    m_dist = new Distance[this->m_numOfVertexs];

    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        m_adjaMatrix[i] = new int[this->m_numOfVertexs];
        for (int k = 0; k < this->m_numOfVertexs; k++)
        {
            // initialize each element of adjacent matrix 
            m_adjaMatrix[i][k] = max_weight;
        }
    }

    for (int i = 0; i < this->m_numOfVertexs; i++)
    {
        m_adjaMatrix[i][i] = 0;
        m_dist[i].value    = 0;
    }

    int vertexIn, vertexOut, weight = 1;
    for (int i = 0; i < m_numOfVertexs - 1; i++)
    {
        cin >> vertexIn >> vertexOut;

        if (true == checkValuesScope(vertexIn, vertexOut, weight))
        {
            m_vertexInSet.insert(vertexIn);
            m_vertexOutSet.insert(vertexOut);
#ifdef UNIT_TEST
            cout << "V" << vertexIn << " -- " << weight << " --> V" << vertexOut << endl;
#endif
            // assign weight value for vertexIn to vertexOut
            m_adjaMatrix[vertexIn - 1][vertexOut - 1] = weight;

            m_vertexInSet.insert(vertexOut);
            m_vertexOutSet.insert(vertexIn);
#ifdef UNIT_TEST
            cout << "V" << vertexOut << " -- " << weight << " --> V" << vertexIn << endl;
#endif
            // assign weight value for vertexIn to vertexOut
            m_adjaMatrix[vertexOut - 1][vertexIn - 1] = weight;
        }
    }
}

void Graph_DG::Dijkstra(int vertexIn)
{
    // Firstly, initialize distance array 
    for (int vertexIdx = 0; vertexIdx < this->m_numOfVertexs; vertexIdx++)
    {
        // set the current pathInfo
        m_dist[vertexIdx].pathInfo = "V" + to_string(vertexIn)
            + " --> V" + to_string(vertexIdx + 1);
        m_dist[vertexIdx].value = m_adjaMatrix[vertexIn - 1][vertexIdx];
        m_dist[vertexIdx].pathVec.push_back(vertexIn);
        m_dist[vertexIdx].pathVec.push_back(vertexIdx + 1);
    }

    // calculate the shortest distance from vertex to other vertexs
    for (int m_numOfVertexs = 1; m_numOfVertexs < this->m_numOfVertexs; m_numOfVertexs++)
    {
        int tmpVertex = 0;  // save the minimum vertex index in array m_dist[]
        int min_value = max_weight; // save the minimum value
        for (int vertexIdx = 0; vertexIdx < this->m_numOfVertexs; vertexIdx++)
        {
            if (!m_dist[vertexIdx].visited && m_dist[vertexIdx].value < min_value)
            {
                min_value = m_dist[vertexIdx].value;
                tmpVertex = vertexIdx;
            }
        }

        // add tmpVertex to shortest distance pathInfo information
        m_dist[tmpVertex].visited = true;

        for (int vertexIdx = 0; vertexIdx < this->m_numOfVertexs; vertexIdx++)
        {
            // the condition m_adjaMatrix[tmpVertex][i]!=max_weigh is required
            if (!m_dist[vertexIdx].visited && m_adjaMatrix[tmpVertex][vertexIdx]!=max_weight &&
                (m_dist[tmpVertex].value+m_adjaMatrix[tmpVertex][vertexIdx])<m_dist[vertexIdx].value)
            {
                // if new edge could impact other vertexs which are not visited, update its 
                // distance pathInfo information
                m_dist[vertexIdx].value = m_dist[tmpVertex].value + m_adjaMatrix[tmpVertex][vertexIdx];
                m_dist[vertexIdx].pathInfo = m_dist[tmpVertex].pathInfo+" --> V"+to_string(vertexIdx+1);
                m_dist[vertexIdx].pathVec  = m_dist[tmpVertex].pathVec;
                m_dist[vertexIdx].pathVec.push_back(vertexIdx + 1);
            }
        }
    }
}

int Graph_DG::getNumOfPathsOfOneVertex(int vertexIn)
{
    Dijkstra(vertexIn);

    int  numOfPaths = 0;
    bool foundLondonTown;
    bool foundParisTown;

    for (int i = 0; i != this->m_numOfVertexs; i++)
    {
        foundLondonTown = false;
        foundParisTown  = false;

        if (m_dist[i].value > 0 && m_dist[i].value != max_weight)
        {
            int size = m_dist[i].pathVec.size();

            for (int j = 0; j < size; j++)
            {
                if (m_dist[i].pathVec[j] == this->m_vertexLondon)
                {
                    foundLondonTown = true;
                }
                else if (m_dist[i].pathVec[j] == this->m_vertexParis &&
                         true == foundLondonTown)
                {
                    foundParisTown = true;
                }
            }

            if (false == foundParisTown)
            {
                numOfPaths++;
#ifdef PRINT_PATH_INFO
                cout << "("<<vertexIn<<","<<m_dist[i].pathVec[size-1] << ") : ";
                for (int j = 0; j < size - 1; j++)
                {
                    cout << m_dist[i].pathVec[j] << " -> ";
                }
                cout << m_dist[i].pathVec[size - 1] << endl;
#endif
            }
        }
    }
    return numOfPaths;
}
    
int Graph_DG::getTotalNumOfPaths()
{
    readDataAndCreateGraph();

    int numOfPaths = 0;
    for (auto vertexIn : m_vertexInSet)  // C++ 11 feature
    {
        numOfPaths += getNumOfPathsOfOneVertex(vertexIn);

        reinitDistance();  // re-initialize distance information for next time
    }

    return numOfPaths;
}

int main()
{
    Graph_DG graph;

    cout << graph.getTotalNumOfPaths() << endl;

    return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值