【调研】DRL优化网络通信领域顶会及期刊

1 顶会及期刊

计算机网络方面国际三大顶会:

  • ACM SigComm, Association for Computing Machinery Special Interest Group on Data Communication, 国际计算机学会网络通信领域顶级会议(三大A类会议)
  • ACM MobiCom, The Annual International Conference on Mobile Computing and Networking,是ACM SIGMobile开办的无线和移动通信领域的顶会
  • IEEE InfoCom, IEEE Conference on Computer Communications, IEEE计算机通信会议

期刊:

  • IEEE Access 速度快

中国计算机学会推荐国际学术刊物

2 强化学习与网络优化相关论文

2.1 网络层

2.1.1 Routing

  • Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN
    code: https://github.com/knowledgedefinednetworking/a-deep-rl-approach-for-sdn-routing-optimization

2.2 传输层

2.2.1 Congestion Control (CC)

  • QTCP: Adaptive congestion control with reinforcement learning

  • TCP ex Machina: Computer-Generated Congestion Control

  • An Experimental Study of the Learnability of Congestion Control

  • Internet Congestion Control via Deep Reinforcement Learning

  • TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

  • Dynamic TCP Initial Windows and Congestion Control Schemes Through Reinforcement Learning

  • SmartCC: A Reinforcement Learning Approach for Multipath TCP Congestion Control in Heterogeneous

  • QTCP: Adaptive Congestion Control with Reinforcement Learning

  • How network monitoring and reinforcement learning can improve tcp fairness in wireless multi-hop networks

  • Improving the Congestion Control Performance for Mobile Networks in High-Speed Railway via Deep R

  • PCC Vivace: Online-Learning Congestion Control

  • Delay-Constrained Rate Control for Real-Time Video Streaming with Bounded Neural Network

  • Multi-Armed Bandit Congestion Control in Multi-Hop Infrastructure Wireless Mesh Networks

  • Improving TCP Congestion Control with Machine Intelligence

  • Multi-Armed Bandit in Action: Optimizing Performance in Dynamic Hybrid Networks

  • Iroko: A Framework to Prototype Reinforcement Learning for Data Center Traffic Control
    code https://github.com/dcgym/iroko

2.2.2 mptcp

  • A Reinforcement Learning Approach for Multipath TCP Data Scheduling
  • ReLeS: A Neural Adaptive Multipath Scheduler based on Deep Reinforcement Learning
  • SmartCC: A Reinforcement Learning Approach for Multipath TCP Congestion Control in Heterogeneous Networks
  • Experience-driven Congestion Control: When Multi-Path TCP Meets Deep Reinforcement Learning
  • Peekaboo: Learning-based Multipath Scheduling for Dynamic Heterogeneous Environments

2.3 应用层

2.3.1 dash

  • D-DASH: A deep Q-learning framework for DASH video streaming
  • Online learning adaptation strategy for DASH clients
  • Continual learning improves Internet video streaming
  • Neural Adaptive Video Streaming with Pensieve
  • Tiyuntsong: A Self-Play Reinforcement Learning Approach for ABR Video Streaming
  • PiTree: Practical Implementation of ABR Algorithms Using Decision Trees
  • HotDASH: Hotspot Aware Adaptive Video Streaming using Deep Reinforcement Learning (code:https://github.com/SatadalSengupta/hotdash)

2.3.2 multimedia streaming

  • QARC: Video Quality Aware Rate Control for Real-Time Video Streaming based on Deep Reinforcement Learning
  • LEAP: Learning-Based Smart Edge with Caching and Prefetching for Adaptive Video Streaming

2.4 综述

  • Applications of Deep Reinforcement Learning in Communications and Networking A Survey
  • 深度强化学习在典型网络系统中的应用综述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值