HDU 2602 Bone Collector(01背包)

本文介绍了一道典型的01背包问题,并提供了完整的AC代码实现。该问题是关于如何选择不同价值和体积的骨头以最大化骨袋的价值,同时不超过袋子的容量限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bone Collector

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)

Problem Description

Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

Input

The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

Output

One integer per line representing the maximum of the total value (this number will be less than 231).

Sample Input

1
5 10
1 2 3 4 5
5 4 3 2 1

Sample Output

14


这道题没什么好说的,就最基本的01背包问题。


AC代码:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
    int w[1111];
    int v[1111];
    int res[1111];
    int T,N,V;
    cin>>T;
    while(T--)
    {
        cin>>N>>V;
        memset(res,0,sizeof(res));
        for(int i=0;i<N;i++)
        {
            cin>>v[i];
        }
        for(int i=0;i<N;i++)
        {
            cin>>w[i];
        }
        for(int i=0;i<N;i++)
        {
            for(int j=V;j>=w[i];j--)
            {
                res[j]=max(res[j],res[j-w[i]]+v[i]);
            }
        }
        cout<<res[V]<<endl;
    }
    return 0;
}


内容概要:本文档详细介绍了基于MATLAB实现的无人机三维路径规划项目,核心算法采用蒙特卡罗树搜索(MCTS)。项目旨在解决无人机在复杂三维环境中自主路径规划的问题,通过MCTS的随机模拟与渐进式搜索机制,实现高效、智能化的路径规划。项目不仅考虑静态环境建模,还集成了障碍物检测与避障机制,确保无人机飞行的安全性和效率。文档涵盖了从环境准备、数据处理、算法设计与实现、模型训练与预测、性能评估到GUI界面设计的完整流程,并提供了详细的代码示例。此外,项目采用模块化设计,支持多无人机协同路径规划、动态环境实时路径重规划等未来改进方向。 适合人群:具备一定编程基础,特别是熟悉MATLAB和无人机技术的研发人员;从事无人机路径规划、智能导航系统开发的工程师;对MCTS算法感兴趣的算法研究人员。 使用场景及目标:①理解MCTS算法在三维路径规划中的应用;②掌握基于MATLAB的无人机路径规划项目开发全流程;③学习如何通过MCTS算法优化无人机在复杂环境中的飞行路径,提高飞行安全性和效率;④为后续多无人机协同规划、动态环境实时调整等高级应用打下基础。 其他说明:项目不仅提供了详细的理论解释和技术实现,还特别关注了实际应用中的挑战和解决方案。例如,通过多阶段优化与迭代增强机制提升路径质量,结合环境建模与障碍物感知保障路径安全,利用GPU加速推理提升计算效率等。此外,项目还强调了代码模块化与调试便利性,便于后续功能扩展和性能优化。项目未来改进方向包括引入深度强化学习辅助路径规划、扩展至多无人机协同路径规划、增强动态环境实时路径重规划能力等,展示了广阔的应用前景和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值