Codeforces Round #366 (Div. 2) B

本文探讨了一个基于图论的游戏策略问题,玩家通过分解图中的环来决定胜负。解析了如何通过计算每一步操作后剩余环的分解次数总和的奇偶性来预测先手玩家的胜率。

Description

Peter Parker wants to play a game with Dr. Octopus. The game is about cycles. Cycle is a sequence of vertices, such that first one is connected with the second, second is connected with third and so on, while the last one is connected with the first one again. Cycle may consist of a single isolated vertex.

Initially there are k cycles, i-th of them consisting of exactly vi vertices. Players play alternatively. Peter goes first. On each turn a player must choose a cycle with at least 2 vertices (for example, x vertices) among all available cycles and replace it by two cycles with p and x - p vertices where 1 ≤ p < x is chosen by the player. The player who cannot make a move loses the game (and his life!).

Peter wants to test some configurations of initial cycle sets before he actually plays with Dr. Octopus. Initially he has an empty set. In the i-th test he adds a cycle with ai vertices to the set (this is actually a multiset because it can contain two or more identical cycles). After each test, Peter wants to know that if the players begin the game with the current set of cycles, who wins?

Peter is pretty good at math, but now he asks you to help.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of tests Peter is about to make.

The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109), i-th of them stands for the number of vertices in the cycle added before the i-th test.

Output

Print the result of all tests in order they are performed. Print 1 if the player who moves first wins or 2otherwise.

Examples
input
3
1 2 3
output
2
1
1
input
5
1 1 5 1 1
output
2
2
2
2
2
Note

In the first sample test:

In Peter's first test, there's only one cycle with 1 vertex. First player cannot make a move and loses.

In his second test, there's one cycle with 1 vertex and one with 2. No one can make a move on the cycle with 1 vertex. First player can replace the second cycle with two cycles of 1 vertex and second player can't make any move and loses.

In his third test, cycles have 1, 2 and 3 vertices. Like last test, no one can make a move on the first cycle. First player can replace the third cycle with one cycle with size 1 and one with size 2. Now cycles have 1, 1,2, 2 vertices. Second player's only move is to replace a cycle of size 2 with 2 cycles of size 1. And cycles are 1, 1, 1, 1, 2. First player replaces the last cycle with 2 cycles with size 1 and wins.

In the second sample test:

Having cycles of size 1 is like not having them (because no one can make a move on them).

In Peter's third test: There a cycle of size 5 (others don't matter). First player has two options: replace it with cycles of sizes 1 and 4 or 2 and 3.

  • If he replaces it with cycles of sizes 1 and 4: Only second cycle matters. Second player will replace it with 2 cycles of sizes 2. First player's only option to replace one of them with two cycles of size 1. Second player does the same thing with the other cycle. First player can't make any move and loses.
  • If he replaces it with cycles of sizes 2 and 3: Second player will replace the cycle of size 3 with two of sizes 1 and 2. Now only cycles with more than one vertex are two cycles of size 2. As shown in previous case, with 2 cycles of size 2 second player wins.

So, either way first player loses.

题意:依次给你i个数,问到最后一个人留下的数组中,所有的数字都没办法分解成两个数就算输。

解法:数字分解成两个数,不管你怎么分,它的分解次数是相同的,那么先手要胜利,只能是在他那次留下奇数个分解次数

2的分解次数为1,3的为2,4的为3,n的分解次数为n-1;

我们依次加起来,判断奇偶就行

#include<bits/stdc++.h>
using namespace std;
long long a[100005];
int n,m;
long long sum[1000005];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        sum[i]=sum[i-1]+(a[i]-1);
    }
    for(int i=1;i<=n;i++)
    {
        if(sum[i]%2==1)
        {
            cout<<"1"<<endl;
        }
        else
        {
            cout<<"2"<<endl;
        }
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/yinghualuowu/p/5751478.html

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值