设计仿真 | Simufact Welding焊接工艺仿真网格划分技巧

1网格划分基本概述

对于每个有限元(FE)仿真而言,必须将连续工件空间离散化为有限数量的单元。这些单元代表了真实工件的质量、刚度等方面的物理特性。空间离散化也称为网格划分。通常,网格划分由网格生成器执行。网格对整个求解分析起着至关重要的作用,主要体现在以下几个方面:

01网格数量影响到求解的精度和效率

常规来说,在电脑配置足够的情况下,网格数量越多,模拟得到的结果越为精确,但是当网格数量达到一定数量后,结果精度不再随着网格数量的增加而增加,并且求解时间也越久,通常情况下,我们需要平衡整个求解过程的求解效率和求解精度,这就需要我们控制网格数量。

02网格类型影响计算结果

不同的求解类型需要的网格类型是不一样的,在焊接模拟分析中,我们常用的网格单元是六面体单元,但有时候也会因为模型的复杂程度,选择不同的采用四面体单元进行模拟分析。

03网格连续性

在实际焊接过程中,各零部件间是相互接触的,可能随着焊接的进行而分离,在大部分模拟软件中,会要求保证各零件间的网格连续性,即节点耦合,但这不仅仅脱离了实际焊接过程中的情况,也会极大的增加焊接网格划分的工作量,在Simufact Welding软件中,其基于Marc的专业求解器,基于其优异的非线性求解分析功能和强大的网格自适应接触功能,能够使得各零部件间的网格不连续,即各零件间单独进行网格划分,无需进行网格连续的操作划分。

Simufact Welding的网格不连续

内容概要:本文深入探讨了Django REST Framework(DRF)在毕业设计中的高级应用与性能优化,围绕智能校园系统案例,系统讲解了DRF的核心进阶技术,包括高级序列化器设计、视图集定制、细粒度权限控制、查询优化、缓存策略、异步任务处理以及WebSocket实时通信集成。文章通过详细的代码示例,展示了如何利用DynamicFieldsModelSerializer实现动态字段返回、使用select_related和prefetch_related优化数据库查询、通过Celery实现异步任务、并集成Channels实现WebSocket实时数据推送。同时介绍了基于IP的限流、自定义分页、聚合统计等实用功能,全面提升API性能与安全性。; 适合人群:具备Django和DRF基础,正在进行毕业设计或开发复杂Web API的高校学生及初级开发者,尤其适合希望提升项目技术深度与系统性能的学习者。; 使用场景及目标:①构建高性能、可扩展的RESTful API,应用于智能校园、数据分析、实时监控等毕业设计项目;②掌握DRF高级技巧,如动态序列化、查询优化、缓存、异步任务与实时通信,提升项目竞争力;③优化系统响应速度与用户体验,应对高并发场景。; 阅读建议:此资源以实战为导向,建议读者结合代码逐项实践,重点理解性能优化与架构设计思路,同时动手搭建环境测试缓存、异步任务和WebSocket功能,深入掌握DRF在真实项目中的高级应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值