人工智能与神经网络BenchMark--MLPerf

What is MLPerf

MLPerf is a benchmark suite that is used to evaluate training and inference performance of on-premises and cloud platforms. MLPerf is intended as an independent, objective performance yardstick for software frameworks, hardware platforms, and cloud platforms for machine learning.

The goal of MLPerf is to give developers a way to evaluate hardware architectures and the wide range of advancing machine learning frameworks.

MLPerf Training benchmarks

The suite measures the time it takes to train machine learning models to a target level of accuracy.

MLPerf Inference benchmarks

The suite measure how quickly a trained neural network can perform inference tasks on new data.

The MLPerf inference benchmark is intended as an objective way to measure inference performance in both the data center and the edge. Each benchmark has four measurement scenarios: server, offline, single-stream, and multi-stream. The following figure depicts the basic structure of the MLPerf Inference benchmark and the order that data flows through the system:

 Server and offline scenarios are most relevant for data center use cases.

while single-stream and multi-stream scenarios evaluate the workloads of edge devices

MLPerf Results Show Advances in Machine Learning Inference Performance and Efficiency | MLCommons

Today, MLCommons®, an open engineering consortium, released new results for three MLPerf™ benchmark suites - Inference v2.0, Mobile v2.0, and Tiny v0.7. These three benchmark suites measure the performance of inference - applying a trained machine learning model to new data. Inference enables adding intelligence to a wide range of applications and systems. Collectively, these benchmark suites scale from ultra-low power devices that draw just a few microwatts all the way up to the most powerful datacenter computing platforms. The latest MLPerf results demonstrate wide industry participation, an emphasis on energy efficiency, and up to 3.3X greater performance ultimately paving the way for more capable intelligent systems to benefit society at large.

The MLPerf Mobile b

目前并未发现任何公开的名为 **Vit-YOLO** 的官方项目或代码实现。然而,可以推测您可能是在寻找结合视觉Transformer(Vision Transformer, ViT)目标检测框架 YOLO 的相关研究或实现[^5]。 以下是关于此类技术方向的一些说明: ### 结合ViT的目标检测方法概述 近年来,基于Transformer架构的方法逐渐被引入到计算机视觉领域,尤其是在目标检测任务中。例如,DETR 和其后续改进版本(如 Deformable DETR、Conditional DETR 等)已经展示了Transformer在目标检测中的潜力[^6]。此同时,YOLO系列作为实时目标检测的经典代表,也在不断演进并尝试融合新的技术理念。 如果要开发类似于“Vit-YOLO”的系统,则可以从以下几个角度入手: 1. 将 Vision Transformers 替代传统卷积神经网络(CNNs),用于特征提取阶段; 2. 调整原有 YOLO 架构设计以适应 transformer 输出特性; 3. 针对特定应用场景优化混合模型性能指标如推理时间、内存消耗等实际表现。 下面给出一段伪代码表示如何初始化一个简单版vit-yolo模型结构: ```python import torch.nn as nn from transformers import ViTModel class Vit_YOLO(nn.Module): def __init__(self, num_classes=80): super(Vit_YOLO,self).__init__() self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224') # Load pre-trained ViT model self.head = nn.Sequential( nn.Linear(768 , 5*num_classes), nn.Sigmoid() ) def forward(self,x): features=self.vit(x).last_hidden_state[:,0,:] # Use CLS token embedding only. outputs=self.head(features) return outputs.view(-1,num_classes,5) model = Vit_YOLO(num_classes=80) print(model) ``` 此部分描述了一种理论上的组合形式,并不代表真实存在的解决方案或者最佳实践[^7]。 ### 性能对比分析工具链建议 对于希望评估不同模型间差异的研究者而言,可参考上述提到过的 Gold-YOLO 测试流程设置统一硬件条件下的速度评测标准[^2]。此外还可以考虑采用如下开源 benchmark 工具辅助完成自动化比较工作: - [DeepLearningExamples](https://github.com/NVIDIA/DeepLearningExamples): 提供多种主流深度学习算法针对Nvidia GPUs调优后的训练脚本集合; - [mlperf inference benchmarks](https://www.mlcommons.org/en/inference-results-v2-1/): MLCommons组织维护的一套广泛接受的标准用来衡量AI系统的推断效率.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值