3DV
Two focus : predicting 3d shapes from image and processing 3d input data
Representations of 3D shape
Depth map
gives distance from the camera to the object in the world at that pixel
RGB image + Depth image = RGB-D Image (2.5D)
We can use Fully Convolutional network to predict the depth
problem : Scale / Depth Ambiguity
-> Use Scale invariant loss
Surface Normals
give a vector giving normal vector to the object in the world for that pixel
We can use Fully Convolutional network to predict Surface Normals
loss: xy∣x∣∣y∣\frac{x y}{|x||y|}∣x∣∣y∣xy
Also can’t represent the occluded objects
Voxel Grid
Represent a shape with a V×V×VV \times V \times VV×V×V grid of occupancies (just like minecraft 😃
Problems: Need high

本文探讨了从图像和处理3D输入数据预测3D形状的各种方法,如深度映射、RGB-D图像、深度和表面法线预测,以及使用深度学习网络(如FCN)解决的问题。重点介绍了VoxelGrid、Oct-Trees、PointNet等表示和处理3D形状的技术,以及像Pixel2Mesh这样的生成3D点云和Mesh的方法,包括损失函数和性能评估指标。
最低0.47元/天 解锁文章
935

被折叠的 条评论
为什么被折叠?



