深度学习入门(8) - Generative models 生成模型

Generative models

Supervised vs. Unsupervised
Discriminative Model vs. Generative Models vs. Conditional Generative

Discriminative: only label compete for probability mass, no competition between images

Generative: images compete with each other for probability mass

usage

Discriminative:

  1. Feature learning
  2. Assign labels to data

Generative:

  1. detect outliers
  2. feature learning
  3. sample to generate new data

Conditional Generative:

  1. assign labels while rejecting outliers
  2. generate new data conditioned on input labels

请添加图片描述

Autoregressive

Goal: Write down an explicit function for p(x)=f(x,W)p(x) = f(x,W)p(x)=f(x,W)

We can break down the probability function to get p(x)=p(x1,x2,...,xT)=Πt=1Tp(xt∣x1,x2,...xt−1)p(x) = p(x_1,x_2,...,x_T) = \Pi_{t=1}^Tp(x_t|x_1,x_2,...x_{t-1})p(x)=p(x1,x2,...,xT)=

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值