深度学习入门(4) -Object Detection 目标检测

本文详细介绍了目标检测技术的发展历程,从早期的R-CNN到FasterR-CNN的引入区域提议网络,再到单阶段的FasterR-CNN和加入实例分割和关键点检测的MaskR-CNN。文章还涵盖了对象检测的评估指标如mAP以及与之相关的任务如语义分割和3D形状预测。

Object Detection

Output:

  1. category label from fixed, known set of categories
  2. bounding box (x, y, width, height)

If only one object is needed to be detected -> add FC layer to the Net pretrianed on ImageNet

Sliding Window

apply a CNN to many different crops of the image, CNN classifies each crop as object / backgroud

but too many windows!! and may detect repeatedly

we need region proposals to find a small set of boxes that are likely to cover all the objects

“Selective Search” quick to generate 2000 regions

R-CNN : Region-Based CNN

  1. Region proposals
  2. warped the image to fixed size 224*224
  3. forward each region through ConvNet independently
  4. output a classification score and also a Bbox of 4 numbers, using the following algorithm
    请添加图片描述
Measurement of boxes (IoU)

IoU=Area of IntersectionArea of UnionIoU = \frac{\text{Area of Intersection}}{\text{Area of Union}}IoU=Area of UnionArea of Intersection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值