Object Detection
Output:
- category label from fixed, known set of categories
- bounding box (x, y, width, height)
If only one object is needed to be detected -> add FC layer to the Net pretrianed on ImageNet
Sliding Window
apply a CNN to many different crops of the image, CNN classifies each crop as object / backgroud
but too many windows!! and may detect repeatedly
we need region proposals to find a small set of boxes that are likely to cover all the objects
“Selective Search” quick to generate 2000 regions
R-CNN : Region-Based CNN
- Region proposals
- warped the image to fixed size 224*224
- forward each region through ConvNet independently
- output a classification score and also a Bbox of 4 numbers, using the following algorithm

Measurement of boxes (IoU)
IoU=Area of IntersectionArea of UnionIoU = \frac{\text{Area of Intersection}}{\text{Area of Union}}IoU=Area of UnionArea of Intersection

本文详细介绍了目标检测技术的发展历程,从早期的R-CNN到FasterR-CNN的引入区域提议网络,再到单阶段的FasterR-CNN和加入实例分割和关键点检测的MaskR-CNN。文章还涵盖了对象检测的评估指标如mAP以及与之相关的任务如语义分割和3D形状预测。
最低0.47元/天 解锁文章
9847

被折叠的 条评论
为什么被折叠?



