背景
随着高德地图业务的快速开展,除了导航本身的算法业务外,其他中小型业务对算法策略的需求越来越多、越来越快,近两年参与的一些新项目从算法调研到应用上线都在一周级,例如与共享出行相关的各种算法服务,风控、调度、营销等各个体系的业务需求。类似于传统导航中成熟的长周期、高流量、低时延的架构和开发方式已无法满足此类业务初期的快速试错和优化改进诉求,找到合适的为业务赋能的算法服务方式就变得势在必行。
在落地实施的过程中,采用一体化架构。所谓的一体化是指整个算法、工程一体化,涉及数据、系统等全链路打通,实现数据流的系统化流动;算法业务调研兼顾工程服务开发,测试、验证过程自动化、智能化,从而形成业务闭环,推动业务的快速迭代。
项目初期,需要快速试错和策略优化。此时,业务需求的QPS往往不高(<1k),因此,传统的应用开发和部署方式,一方面拖慢了业务节奏,另一方面浪费了大量资源。
在此过程中,我们希望达到的目标就是离线策略调研即服务逻辑开发,离线调研完成即服务化完成,这样就能够显著降低算法调研到策略上线的时间。因为性能(QPS、RT)压力不大,离线用Python进行快速的开发就成为可能。
从长期看,随着业务逐步成熟,算法快速组合、服务调用量和服务性能成为衡量算法服务重要的评价标准,此时合理的优化就应该被向前推进,例如核心算法逻辑高性能化将会变成重要的工作。
因此,算法工程一体化的建设过程也就是满足业务从初创期到成熟期迭代的过程。
系统总体逻辑架构

高德地图在面对中小型业务快速发展的需求时,采取算法工程一体化架构,实现数据、系统全链路打通,加速业务迭代。通过统一接入网关、Serverless上的FaaS服务、质量保障体系,确保服务稳定性和快速上线。算法同学通过Python等语言进行快速开发,同时建立自动化测试流程,以应对业务初期的快速试错和策略优化。
最低0.47元/天 解锁文章
461

被折叠的 条评论
为什么被折叠?



