传统ols中的hypothesis要求
x
i
x_i
xi与
u
i
u_i
ui无关。但是在实际中很难满足这个假设,有时候因变量(在单方程模型中就是内生变量)也会反过来影响自变量。ols估计将是有偏和不一致的,(有偏指的是参数估计值于期望值不相等,一致性是大样本依概率收敛于期望值,可以参考另外一个博文)。这个时候比较有效的方法是采取工具变量法进行估计参数值。
Namely, an apppropriate instrumental variable(s) should be incorporated in the equation, which is used to replace the dependent variable in the right hand side of the equation. And 一个工具变量should meet the following requriements:
- VI should be high correlated with the endongenous variable
- VI is independent with u i u_i ui
- At the same, VI has relatively lower collinearity with other explanary variables.
s很多估计方法可以利用, 比如2ls, gmm,sgmm。 which can be found in STATA.
about identification definition:
- This process of using extra exogenous variables as instruments for endogenous RHS variables is known as identification(识别)
- If there are no additional exogenous variables outside the original equation that can be used as instruments for the endogenous RHS variables then the equation is said to be unidentified(不能识别)
在传统OLS回归中,当存在内生性问题时,即因变量可能影响自变量,导致OLS估计有偏且不一致。本文介绍如何通过工具变量法解决此问题,选取合适的工具变量需满足与内生变量高度相关、与误差项无关及与其他解释变量较低共线性的条件。文中还讨论了识别定义,即使用外生变量作为内生变量的工具变量过程。
7375

被折叠的 条评论
为什么被折叠?



