牛客练习赛16 B-漂亮的树

链接: https://www.nowcoder.com/acm/contest/84/B
来源:牛客网

题目描述

街上有n棵树,标号为1...n,第i棵树的高度为a i
定义这n棵树是漂亮的,当且仅当
    1. 对于所有的i,a i=a n-i+1
    2. 对于1 <= i < n / 2 (不是整除),a i + 1= a i + 1;
比如说 “2 3 4 5 5 4 3 2”和“1 2 3 2 1”是漂亮的而“1 3 3 1”和“1 2 3 1”不是。
现在请问最少修改几棵树的高度(可以变大也可以变小),使得这些树是漂亮的。

输入描述:

第一行一个整数n表示树的数量( 1 <= n <= 100,000)。

第二行n个整数表示树的高度( 1 <= ai <= 100,000)。

题解:
b数组保存一个标准序列,然后计算a数组与b数组的差
保存到x数组里,对于每个ai,若变化到bi,改变为t
则x数组里原本存的t的数量便是不需要改变的a的数量
因此答案为n-t
代码:

#include<bits/stdc++.h>
using namespace std;
int a[100005],b[100005],x[100005];
int main()
{
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    for(int i=1;i<=n/2;i++)b[i]=b[i-1]+1;
    if(n%2)b[n/2+1]=b[n/2]+1;
    else b[n/2+1]=b[n/2];
    for(int i=n/2+2;i<=n;i++)b[i]=b[i-1]-1;
    for(int i=1;i<=n;i++)x[a[i]-b[i]+100000]++;
    int mi=1e9;
    for(int i=1;i<=n;i++)
    {
        int k=a[i]-b[i]+100000;
        mi=min(mi,n-x[k]);
    }
    printf("%d\n",mi);
    return 0;
}

<think>嗯,用户想要找2024年ICPC昆明邀请赛的题目解析,但根据提供的引用内容,现有的资料只覆盖到2022年昆明的题目,比如引用[1]提到2020、2021年的ICPC和CCPC题目,以及引用[4]详细解析了2022昆明站的G题。不过用户询问的是2024年的,这可能还没有公开的解析,或者可能还没有举办。需要先确认是否存在2024年的比赛信息,或者是否用户可能记错了年份?比如,2024年的比赛可能尚未举行,或者相关信息还未被整理发布。 首先,检查提供的引用内容,发现最新的昆明站信息是2022年的,引用[4]讨论的是2022昆明G题。用户提到的2024年可能是个错误,或者他们希望提前获取信息。但通常比赛结束后才会有解析,所以需要告知用户目前没有相关资料,并建议他们关注官方渠道或后续的社区分享。同时,可以推荐现有的2022年昆明题解作为参考,帮助用户了解题型和考点,比如动态规划、期望计算等常见问题。 另外,用户可能对如何准备比赛感兴趣,可以建议他们分析历年题目类型,比如引用[1]提到的区域赛常考题型,或者引用[3]中提到的训练经验。需要确保回答准确,避免提供不存在的资源,同时提供有用的替代信息,帮助用户找到最近的可用资料。</think>关于2024年ICPC昆明邀请赛题目解析,目前尚未有官方或主流平台发布完整的题目解析报告。根据历史信息推测,ICPC区域赛的题目解析通常会在赛后由参赛队伍、算法社区或教练团队逐步整理发布。以下是可参考的备赛建议和现有资源: --- ### 一、近期ICPC题型趋势参考 1. **动态规划与组合数学** 如2022年昆明站G题考察了**概率期望与递推关系**,需掌握马尔可夫链、状态转移方程的建立[^4] $$E = \sum_{i=1}^n \left( \frac{p_i}{1-p_i} \cdot \sum_{j \neq i} \frac{p_j}{1-p_i} \right)$$ 此类问题常需分析极限状态下的数学期望。 2. **数据结构优化** 近年区域赛常出现需要**线段/状数组维护区间性质**的题目,例如区间最值、历史版本查询等。 3. **图论与网络流** 包括最小割建模、分层图最短路等高级技巧,如2021年沈阳站曾出现网络流与二分答案结合的题目[^2]。 --- ### 二、获取解析的途径建议 1. **官方渠道** 关注ICPC官网及昆明站承办院校的赛事公告,解析可能通过**赛后题解报告会**发布。 2. **算法社区** - **Codeforces**:搜索标签`[ICPC Kunming 2024]` - **知乎/掘金**:技术博主常撰写详细题解(例:2022年G题推导过程) 3. **训练平台** 尝试在**Codeforces Gym**或**牛客竞赛**题库中查找昆明站模拟赛题。 --- ### 三、历届昆明站真题参考 若需练习类似题型,可参考2022年昆明站题目: - **G题(豆子操作期望)**:结合概率论与递推,需推导稳定状态下的位置关系 - **B题(几何构造)**:通过坐标系变换简化多边形切割问题 ```python # 示例:概率期望计算的代码框架 def calculate_expected_value(probabilities): n = len(probabilities) expected = 0.0 for i in range(n): pi = probabilities[i] term = pi / (1 - pi) if pi != 1 else 0 sum_other = sum(pj / (1 - pi) for j, pj in enumerate(probabilities) if j != i) expected += term * sum_other return expected ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值