POJ 3579 Median

本文介绍了一个算法问题:如何从给定的一组整数中快速计算所有数对差值的中位数。文章提供了一段C++代码实现,通过排序和二分查找的方法来高效解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Median
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions:8914 Accepted: 3098

Description

Given N numbers, X1X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i  j  N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of = 6.

Input

The input consists of several test cases.
In each test case, N will be given in the first line. Then N numbers are given, representing X1X2, ... , XN, ( X≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

Output

For each test case, output the median in a separate line.

Sample Input

4
1 3 2 4
3
1 10 2

Sample Output

1
8

#include<cstdio>
#include<algorithm>
using namespace std;
int a[100004];
int main()
{
    long long n;
    while(~scanf("%lld",&n))
    {
        int i,j;
        long long m=n*(n-1)/2;
        for(i=0; i<n; i++)
            scanf("%d",&a[i]);
        sort(a,a+n);
        int q=0,r=1000000000;
        while(r-q>1)
        {
            int mid=(r+q)/2;
            long long ans=0;
            for(i=0;i<n;i++)
            {
                ans+=n-(lower_bound(a+i,a+n,mid+a[i])-a);
            }
            if((m%2==1&&ans>=m/2+1)||(m%2==0&&ans>m/2))
                q=mid;
            else r=mid;
        }
        printf("%d\n",q);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值