54、Exploring Sequence-to-Sequence Architectures: From Machine Translation to Decoders

Exploring Sequence-to-Sequence Architectures: From Machine Translation to Decoders

1. Machine Translation Basics

In the realm of machine translation, we often start by creating a translator object. We first format the source and target characters. For instance, we select a mini - batch of 32 samples, convert lists of character strings to lists of tensors, and pad them to get tensors.

src_batch = pad_sequence(seqs2tensors( 
    train_src_seqs[:32], token2idx), 
    batch_first=True, padding_value=0) 
tgt_batch = pad_sequence(seqs2tensors( 
    train_tgt_seqs[:32], token2idx), 
    batch_first=True, padding_value=0) 

We then create padding masks to remove padding symbols from the attention:


                
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值