hdu--2533

简单dp


//因为每种规格砖的数量是不限的
//将每块砖转换成3个不同权值得矩形
//就又回到前面的矩形嵌套问题了。 
//所以我直接把前面的代码改了一下就提交了。。。。。 
//状态转移方程:dp(j)=max(dp(i)+r[j].h)(i为j相连的点)
#include<iostream>
#include<cstring> 
using namespace std;

int G[1010][1010];
int d[1010];  //用于记忆已经求出的顶点状最长路径长度 
typedef struct  //表示矩形的结构体 
{
        int x;
        int y;
        int h;
}R;
 R r[1100];
int dp(int i,int n) //返回从i出发的最大路径长度 
{   
    int& ans=d[i]; //声明ans为d[i]的引用
    if(ans>0) return ans; //d[i]已经计算出来了,直接返回 
    ans=r[i].h;//初值为第i个矩形的权值 
    for(int j=1;j<=n;j++)
       if(G[i][j])
           ans=(ans>dp(j,n)+r[i].h)?ans:(dp(j,n)+r[i].h);
    return ans;
}


inline void swap(int &a,int &b)
{
    int t;
    if(a>b)
    {
       t=b;
       b=a;
       a=t;
    }
}

int main()
{
    int i,j,n,a,b,c,max,k,a1,b1,c1,Case=1;
    while(cin>>n&&n)
    {
        k=0;
        for(i=1;i<=n;i++) //矩形编号1--k 
        {
            cin>>a>>b>>c;
            a1=a;b1=b;c1=c;
            if(a>b)        //将一块砖转换成3个带权值的矩形并编号 
              swap(a,b);  //保证宽比长小 
            r[++k].x=a;r[k].y=b;r[k].h=c;
            a=a1;b=b1;c=c1;
            if(a>c)
              swap(a,c);
            r[++k].x=a;r[k].y=c;r[k].h=b;
            a=a1;b=b1;c=c1;
            if(b>c)
               swap(b,c);
            r[++k].x=b;r[k].y=c;r[k].h=a; 
        }
        memset(G,0,sizeof(G)); //初始化图的邻接矩阵 
        memset(d,0,sizeof(d)); 
        for(i=1;i<=k;i++)
           for(j=1;j<=k;j++)
               if(r[i].x>r[j].x&&r[i].y>r[j].y)
                  G[i][j]=1;   //矩形i可以嵌套j,在图中添加一条边
        max=0;
        for(i=1;i<=k;i++)
        {
            int m=dp(i,k);
            if(max<m) //对每个顶点找一次最长路径并求其中的最大值、
               max=m;
        }
        cout<<"Case "<<Case++<<": maximum height = "<<max<<endl;
    }
return 0;
}


### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值