Hadoop大数据存算分离需要什么样的存储?

本文探讨了Hadoop作为数据湖的常用解决方案,以及HDFS面临的扩展性、计算存储绑定和性能问题。S3A虽可实现存算分离,但存在性能和功能局限。XSKY推出了XSKY HDFS Client,解决了这些问题,通过直接访问存储集群的OSD,提供更好的性能和追加写功能。XSKY HDFS Client的自动化部署和MergeCommitter技术提高了文件提交效率,为Hadoop在大数据场景下的存算分离提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

据IDC预测,到2021年,至少50%的全球GDP将由数字化驱动。面对海量数据,企业亟需通过更加现代化、敏捷、高性能的IT基础设施来推进业务持续发展。

当今世界,只有很少的数据得到了分析,还有巨大的待开发潜能,在高达3000亿美元的以数据为驱动的市场中,中国在人工智能、物联网和5G等技术方面已经逐渐成熟,为中国数字经济蓬勃发展奠定了基础,而那些尚未被充分利用的数据,就是新商业价值的关键元素。

01.数据湖的价值

数据湖支持以其本机或接近本机的格式存储数据,从而为高技能的数据科学家和分析师提供了未完善的数据视图。数据湖提供了一个没有折衷的环境,以及相应的记录分析系统所共有的保证和利益,即语义一致性,治理和安全性。

因此,数据湖特别适合科学家对未知数据和未知问题的探索。很多暂时得不到分析的数据,可以暂时统一保存在数据湖里。

02.Hadoop是数据湖最常用的解决方案

Hadoop的一个主要优势是支持围绕未知数据和未知问题的这些探索性用例。它在LDW(逻辑数据仓库)中扮演的角色在基于数据管理基础设施模型的右上象限 - 未知数据领域和未知问题。由于Hadoop技术针对语义灵活性进行了优化,因此它可以与传统的结构化数据仓库并列,从而实现更广泛的数据类型,最终用户和用例。

虽然现在Hadoop没有前几年那么热,但是,它依然是数据湖最常用的解决方案。最近的Gartner研究数据表明,Hadoop的部署和需求仍然很大并且正在增长。在最近的一项调查中,有235名受访者表示,34%的受访者目前正在使用Hadoop进行数据和分析工作,另有55%的受访者计划在未来24个月内进行调查,总计达到89%。这是Gartner 2016年研究以来的需求最大幅度增加。

03.HDFS的局限

Apache Hadoop是一个高度可扩展的系统,广泛应用于大数据存储和分析。Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统。

HDFS主要由三部分构成:

▪ NameNode:NameNode 上保存着整个HDFS的命名空间和数据块映射关系。所有的元数据操作都将在NameNode中处理;

▪ DataNode:DataNode将HDFS数据以文件的形式存储在本地的文件系统中,它并不知道有关HDFS文件的信息;

▪ DFSClient:HDFS的客户端,在Hadoop文件系统中,它封装了和HDFS其他实体的复杂交互关系,为应用提供了一个标准的、简单的接口。

Hadoop为大数据分析带来便利的同时,也面临着一些挑战:

1、Hadoop 的扩展受限

NameNode是HDFS中的管理者,主要负责文件系统的命名空间、集群配置信息和数据块的复制等。NameNode在内存中保存文件系统中每个文件和每个数据块的引用关系,也就是元数据。

在运行时,HDFS中每个文件、目录和数据块的元数据信息(大约150字节)必须存储在NameNode的内存中。根据Cloudera的描述,默认情况下,会

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值