强连通分量有两种解法
1.一种是tarjan算法(不得不说这人很强)
2.两边dfs的算法
//1.tarjan算法
#include<iostream>
using namespace std;
#include<stack>
#include<vector>
const int maxn = 1e5+5;
bool inst[maxn];
int cnt = 0,scc[maxn];
int dfn[maxn],low[maxn];
stack<int> st;
vector<int> son[maxn];
int tt = 0;
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st.push(u);inst[u] = 1;
for(int i=0;i<son[u].size();i++){
int v = son[u][i];
if(!dfn[v]){
dfs(v);
low[u] = min(low[u],low[v]);
}
else if(inst[v]){
low[u] = min(low[u],dfn[v]);
}
}
if(low[u] == dfn[u]){
++tt;
while(1){
int v = st.top();
inst[v] = 0;
scc[v] = tt;
st.pop();
if(u == v){
break;
}
}
}
}
int main(){
int n,m;
cin >> n >> m;
for(int i=1;i<=m;i++){
int u,v;
cin >> u >> v;
son[u].push_back(v);
}
dfs(1);
for(int i=1;i<=tt;i++){
for(int j=1;j<=n;j++){
if(scc[j] == i){
cout << j <<" ";
}
}
cout << endl;
}
}
2.两遍dfs
#include<iostream>
using namespace std;
#include<vector>
const int maxn = 1e5 + 5;
vector<int> s;
vector<int> son1[maxn];
vector<int> son2[maxn];
int vis[maxn], color[maxn];
int cnt = 0;
void dfs1(int u) {
vis[u] = 1;
for (int i = 0; i < son1[u].size(); i++) {
int v = son1[u][i];
if (!vis[v])
dfs1(v);
}
s.push_back(u);
}
void dfs2(int u) {
color[u] = cnt;
for (int i = 0; i < son2[u].size(); i++) {
int v = son2[u][i];
if (!color[v]) {
dfs2(v);
}
}
}
int main() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int u, v;
cin >> u >> v;
son1[u].push_back(v);
son2[v].push_back(u);
}
for (int i = 1; i <= n; i++) {
if (!vis[i]) {
dfs1(i);
}
}
for (int i = n-1; i >= 0; i--) {
if (!color[s[i]]) {
++cnt;
dfs2(s[i]);
}
}
for(int i=1;i<=cnt;i++){
for(int j=1;j<=n;j++){
if(color[j] == i){
cout << j << " ";
}
}
cout << endl;
}
}
个人感觉两遍dfs的好写点